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Abstract.
Stroke, the second leading cause of death globally, necessitates prompt
diagnosis for effective prognosis. CT imaging has limitations, especially
in identifying acute lesions. This work introduces a novel deep repre-
sentation that uses multimodal inputs from CT studies and perfusion
parametric maps, to retrieve stroke lesions. The architecture follows an
autoencoder representation that forces attention on the geometry of
stroke through additive cross-attention modules. Besides, a cascade train
is herein proposed to generate synthetic perfusion maps that complement
multimodal inputs, refining stroke lesion segmentation at each stage
of processing and supporting the observational expert analysis. The
proposed approach was validated on the ISLES 2018 dataset with 92
studies; the method outperforms classical techniques with a Dice score of
.66 and a precision of .67.
Resumen.
El accidente cerebrovascular (ACV), segunda causa de muerte en el
mundo, requiere un diagnóstico temprano para un pronóstico favorable.
Las imágenes de TC tienen limitaciones, especialmente en la identificación
de lesiones agudas. Este trabajo introduce una novedosa representación
profunda que utiliza datos multimodales TC y mapas paramétricos de
perfusión para segmentar lesiones de ACV. La arquitectura sigue una
representación autocodificadora que fuerza la atención sobre la geometría
del ACV a través de módulos aditivos de atención cruzada. Además, se
propone un entrenamiento en cascada para generar mapas de perfusión
sintéticos que complementen las entradas multimodales, refinando la
segmentación de las lesiones en cada etapa del procesamiento y apoyando
el análisis observacional del experto. El enfoque propuesto fue validado
en el conjunto de datos ISLES 2018 con 92 estudios; el método supera a
las técnicas clásicas con una puntuación Dice de .66 y una precisión de .67.
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1. Introduction
Stroke is the disease with the second highest mortal-
ity rate in the world and the first cause of disability in
developed countries (Roth et al., 2020). Stroke lesions
are related to the interruption of blood flow, causing
irreversible damage by tissue death on the brain cells
(Rekik et al., 2012). The early localization, measure-
ment, and characterization of stroke lesions are critical
to determine if a patient is a candidate for a reperfusion
therapy. Computerized tomography (CT) is the most
common study for stroke triage and diagnosis, due to the
high availability in clinical centers and the relatively fast
protocols of attention. Nonetheless, CT studies have
low contrast, and the use in early stages is limited to
triage analysis to distinguish between ischemic and hem-
orrhagic, or other brain affectations (Von Kummer et al.,
1994). To complement such analysis, it is demanding to
use perfusion protocols, obtaining complementary maps
(CTP, CT perfusion) that describe the behavior of a
fluid around the lesion. From this bank of multimodal
CT and CTP studies, the expert should localize, and
delineate lesions to characterize lesions and determine
an attention protocol. This procedure is a tedious task
that takes approximately 15 minutes per case (Martel
et al., 1999), and a reported low concordance between
experts (Neumann et al., 2009).

Computational strategies have recently been proposed
to deal with automatic stroke segmentation from CT and
CTP studies. Recently, these strategies have been based
on deep autoencoders that learn to discriminate between
healthy and hypoperfused tissue, guided by expert anno-
tations, allowing to support the segmentation (Liu et al.,
2020; Wang et al., 2020). For instance, Tureckova and
Rodríguez-Sánchez (2018) built a Unet with dilated con-
volutions to enlarge the receptive field, including a major
computation context, and allowing the characterization
of lesions with different sizes. Likewise, Dolz et al. (2018)
built a multi-input autoencoder to model the intrinsic fea-
tures from each modality with a dedicated convolutional
branch. Moreover, Clerigues et al. (2019) separated the
images into small patches, to build a balanced dataset
with the same number of lesions and healthy patches. Sub-
sequently, the balanced patches dataset was used to train
an asymmetric autoencoder. Alternative strategies have
used generative frameworks to segment ischemic lesions
from synthetic diffusion-weighted MRI modalities, which
have greater sensitivity in the acute setting. For instance,
Liu (2019) built a GAN strategy to generate synthetic
diffusion-weighted imaging (DWI) sequences from CTP
maps which were used afterward to estimate the lesions
using a Unet.

This work introduces a novel deep cascade strategy
that includes multimodal inputs (CT and CTP maps)
to segment ischemic stroke lesions. For doing so, a deep
autoencoder is herein adjusted embedded multimodal

information and decodified lesion annotations, follow-
ing a supervised scheme. From the architecture, mul-
tiple additive-cross attention mechanisms are included
between the encoder and decoder to force representa-
tion to stand out hypoperfused marks and regions as-
sociated with stroke lesions. From the learning scheme,
this work introduced a cascade scheme to refine lesion
estimations in two stages. In the first stage, the architec-
ture is optimized to generate synthetic CTP maps that
complement information and help with stroke localiza-
tion. Afterward, in the second stage, the synthetic input
together with CT and CTP studies estimates a refined
Stroke lesion.

2. Proposed Approach
We propose a cross-attentional autoencoder to segment
ischemic stroke lesions from CT and CTP parametric
maps. The proposed architecture is trained under a cas-
cade framework that monitors the contribution of all de-
coder levels, and a weighted loss function to deal with
the natural class imbalance of stroke segmentation. In
a first cascade stage, synthetic maps are generated to
guide and refine stroke segmentation in further stages.
The general description of our proposed framework is
described in Figure 1.

2.1 Additive Cross-Attentional Autoencoder
Nowadays, autoencoders are the most used architecture
to deal with stroke lesion segmentation. Specifically,
Unet (Ronneberger et al., 2015) autoencoder includes
skip connections to integrate deep features from the
encoder to the decoder, in the same level of process-
ing. In such cases, the architecture has been proven to
be ideal in problems that require the recovery of struc-
tural and global shape information. Nevertheless, these
connections could integrate uncorrelated features into
the decoder representation, harming the decoder rep-
resentation and slowing the learning process. Hence,
we implement a special autoencoder that includes cross-
attention mechanisms (ATT) as skip connections, pre-
serving highly correlated features, and following an ad-
ditive alignment (Gómez et al., 2023).

In general, the cross-attentional architecture is a con-
volutional neural network (CNN) that receives a CT im-
age (I(x)) and CTP parametric maps (Mp(x)) in a sim-
ple concatenation scheme ({I(x);Mp(x)}). The encoder
maps the sequences into a low-dimensional latent space
representation (h → S(x)) that retains the most impor-
tant visual stroke patterns. Next, the latent vector is
decoded into a probability map (S(x)) that highlights
potential hypoperfused regions. In every level of the
decoder, the convolutional activations (Xl

d) are comple-
mented by the responses from the encoder (Xl

e) on the
same processing level (l) with additive cross-attention
modules. To compute the similarity between encoder
and decoder features, both features are linearly pro-
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Figure 1

Deep Cascade Cross-attentional Architecture to Segment Acute Ischemic Stroke Lesions from CTP Sequences

jected, summed, and activated with a ReLU (σ1) func-
tion to consider only positive similarities. Following
this, a single attention map is calculated using a 1 × 1
convolutional layer and a sigmoid activation (σ2) func-
tion. Thereafter, refined characteristics are computed
from the encoder (Xre) with a Hadamard product (⊙)
between the features of the encoder and the attention
map. The refinement of encoder features is described
by: Xl

re = Xl
e ⊙σ2

(
W T

reσ1
(
W T

e Xl
e +W T

d Xl
d

))
.

2.2 Multilevel Refinement
To deal with the natural class imbalance of stroke seg-
mentation and promote the learning of deep features
in the attentional autoencoder, the cross-attentional ar-
chitecture is adjusted with multilevel refinement (MR)
in the decoder. The multilevel refinement consists of
monitoring the contribution of the decoder blocks with
a weighted loss between a low-scale prediction and the
ground truth. To measure this contribution, deep su-
pervision layers were placed in the decoder blocks from
all levels. This deep supervision consists of applying a
bilinear interpolation on output features, followed by
1 × 1 conv and sigmoid activation to estimate a low-
scale version of the stroke lesion. Deep supervision of
the representation allows to minimize the propagation
of errors and avoid the vanishing of the gradient (Li et

al., 2022). The loss function is a binary cross-entropy,
weighted by class weight maps (C) that give more im-
portance to lesion pixels. These weight class maps are
built from the manual delineations of the ischemic le-
sions as a reference and assign a specific weight to the
pixels of the same class. Consequently the estimations
are used alongside their corresponding weight maps to
calculate the final loss as: Ltotal = W lCY log(Ŷ l) where{

Y, Ŷ l,C
}

∈ RO×H×W , Y is the expert’s manual delin-

eation, Ŷ l is the model’s prediction at each level l, and
W l is a positive number evidencing the importance of
the lth layer segmentation.

2.3 Cascade Training
Typically, stroke is assessed from multiple CT sequences.
In particular, perfusion studies record the blood flow
through the brain parenchyma, potentially indicating
brain damage due to stroke. From these CTP studies
are computed parametric maps that summarize kine-
matic information, allowing to approximate indexes re-
lated to the damaged tissue. To exploit the non-local
information from these CTP sequences, we conducted
a cascade training to i) learn attention maps that high-
light the ischemic stroke lesion visual patterns and ii)
segment the acute ischemic stroke lesions. In the first
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Table 1

Dice Score for Different Configurations of the Proposed Method with all the Present Modalities on the
ISLES2018 Dataset

Configuration Modalities
MR ATT NCCT CBV CBF TMax MTT

× × .20± .26 .51± .30 .57± .26 .50± .25 .56± .30
✓ × .26± .24 .51± .27 .58± .22 .55± .26 .57± .26
✓ ✓ .24± .19 .54± .28 .57± .23 .55± .28 .55± .21

Note. MR is for multilevel refinement and ATT is for attention mechanisms.

phase, the proposed attentional autoencoder is trained
to segment the ischemic stroke lesions from the CTP
inputs. During training the attention maps learn to
highlight regions that resemble ischemic patterns. After-
wards, from the additive-cross attention module in the
first level, synthetic maps Ms(x) are obtained by aver-
aging the positive similarities across channels. Finally,
the proposed architecture is adjusted from the concate-
nation of the CTP inputs and the synthetic attention
map ([I(x);Mp(x);Ms(x)]). These maps emphasize the
most important parts of the image and a possible indi-
cation of the shape of the lesion, guiding the network
when segmenting if they are added from the start.

3. Experimental Setup
The proposed methodology was validated on the Ischemic
Stroke Lesion Segmentation 2018 (ISLES2018) public
dataset. This dataset contains 156 studies of patients di-
agnosed with acute ischemic stroke, and it is partitioned
in 94 training studies and 62 testing studies. Each study
contains a plain CT image, the raw 4D perfusion study,
and four parametric maps, namely cerebral blood flow
(CBF), cerebral blood volume (CBV), mean transit time
(MTT), and time to maximum (TMax). The segmen-
tation of the ischemic lesions was performed manually
by expert radiologists over DWI sequences, acquired af-
ter the CTP. The delineations are only available for the
training studies.

The cross-attentional autoencoder is made of convo-
lutional blocks with two 2D convolutional layers that
include batch normalization and a ReLU activation. In
total, the encoder and decoder both have six levels of
processing with 32, 64, 128, 256, 512, and 1024 filters,
respectively. In each encoder level, max-pooling layers,
with a reduction factor of 2 were included after every con-
volutional block to reduce the spatial dimensionality. Bi-
linear interpolations were added pre-convolutional block
to expand the spatial dimensionality by a factor of 2 in
the decoder.

For training, 19 studies were randomly excluded from
the training set to use as validation. All images were re-
sized to 224×224. The training was done for 600 epochs
with a binary cross-entropy loss, and an AdamW opti-
mizer with an initial learning rate of 3e–2, and weight

decay of 1e–5. Furthermore, data augmentation such as
random brightness and contrast, flips, rotations, random
elastic transformations, and random grid and optical dis-
tortions were applied to the slices. The weights for the
segmentation outputs were set to W = {.03, .045, .05, .125,
.25, .5} and the weights used to construct the class weight
maps were .7 for the lesion and .3 for the background.

4. Evaluation and Results
Firstly, we carry out an ablation study to measure the
contribution of each modality included in this study, and
the contribution of each component of the proposed ap-
proach. Hence, in the first experiment, we measured the
performance of unimodal models to exploit the informa-
tion available on every modality of the dataset. Table 1
shows the dice score for all the selected configurations
on every modality on the dataset.

The best configuration was achieved from the archi-
tecture with MR (.58), and using CBF maps. Is notewor-
thy an improvement on the dice score of .026 and .022 for
the configurations MR and MR + ATT compared with
the standard autoencoder. There is also a considerable
difference in the models that use CT together with the
parametric maps. This fact is due to the low CT sen-
sitivity. As the image shows, the best overlap with the
expert’s segmentation is obtained when using the para-
metric maps in comparison to the CT one which failed
in both localization and characterization of the lesion.
In this case, multimodal information provides better ap-
proximations when generating the segmentations.

In a second experiment, we exploit the multimodal
nature of the adjusted autoencoder. For doing so, the ar-
chitecture was adjusted using multi-context information,
i.e., following an early fusion of the CT and parametric
maps at the input of the autoencoder. Table 2 shows
the obtained results for every chosen parametric map
group and configuration of the model. In such cases,
there exists an exhaustive validation regarding the com-
ponents of the architecture, as well as, the combination
of potential maps that observe lesion findings.

As observed, the proposed cascade methodology has
the capability to fuse and take advantage of lesion find-
ings observed from different studies. In fact, the mod-
els that include multicontext information are superior
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Table 2

Dice Score for Different Configurations of the Proposed Method with Different Combinations of Modalities from
the ISLES2018 Dataset

Configuration Modalities
MR ATT TMax+CVB TMax+CBF CVB+CBF TMax+CVB+CBF All

× × .58± .25 .58± .24 .53± .26 .60± .24 .62± .23
✓ × .61± .23 .62± .20 .54± .27 .63± .21 .63± .22
✓ ✓ .60± .23 .62± .21 .55± .25 .61± .25 .63± .16

Note. MR is for multilevel refinement and ATT is for attention mechanisms.

Figure 2

Examples of the Realized Segmentation for Every Modality of the First Table

Note. The red line shows the shape of the lesion indicated by the expert and the blue one the output from
the network.

to unimodal models. The best performance (.63) is ob-
tained by two configurations, the one that uses all para-
metric maps with the original CT and the one that uses
a combination of Tmax, CBV and CBF. Nevertheless,
the mean dice scores for the experiments with all inputs
are more consistent than the combination that only uses
three of them. An example of the output segmentations
obtained is presented on Figure 3. As this image il-
lustrates, the MR and attention mechanisms provide a
greater degree of local delineation, preserving particular
structures of the lesion and obtaining a great overlap in
the masks.

Finally, Figure 4 shows the achieved results with and
without cascaded refinement stages. Also, it is observed
in the last row the output synthetic maps, generated by
the autoencoder in the first phase, which is then used to
complement inputs in a refinement stage. As observed,
the use of a cascade strategy allows to deal with the chal-

lenging problem of stroke lesion segmentation, allowing
among others to obtain a better overlap score, but at
least, allowing to localize tiny lesions, which are indica-
tive of early stages of the disease. Additionally, these
synthetic maps can potentially be used in clinical prac-
tice to support observational analysis, for instance, in
centers that only have available CT studies.

5. Conclusions and Perspectives
This work introduced a cascade training scheme that ad-
justs a deep attention autoencoder to segment stroke le-
sions. The introduced methodology has the ability to
manage multi-context information, allowing an early fu-
sion of parametric maps (CTP) and CT studies. The
introduced cascade training strategy in the first stage
generates a synthetic map that complements studies to
observe localizations, while in the second stage achieves
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Figure 3

Examples of the Realized Segmentation for Every Modality of the First Table

Note. The red line shows the shape of the lesion indicated by the expert and the blue one the output from
the network.

Figure 4

Examples of the Realized Segmentation for Every Modality of the First Table

Note. The red line shows the shape of the lesion indicated by the expert and the blue one the output from
the network.

a refinement of the lesion. The reported results evidence
a better support of cascade strategy, that together with
the multilevel refinement and the attention mechanisms,
achieve the localization and delineation of stroke lesions.
The proposed approach was validated on a public dataset
outperforming results, but also showing the challenges

on the stroke segmentation from raw CT studies. Future
works include alternative mechanisms to learn from mul-
tiple modalities. Also, the validation on extra datasets
that include additional studies, but also multiple expert
radiologists to avoid the bias from an expert.
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