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Abstract.
This study focuses on understanding visual coding in multiple brain areas
and its implications for neural processing in the visual system. It highlights
the use of simultaneous recordings of large neuronal populations to inves-
tigate how visual information is encoded and processed in the brain. By
studying the activity of multiple brain areas, the paper aims to uncover the
mechanisms underlying brain-wide visual perception and provide insights
into the neural basis of visual processing. The findings of this research
contribute to the broader field of neuroscience and have implications for
understanding visual disorders and developing therapeutic interventions.
Resumen.
Este estudio se centra en comprender la codificación visual en múltiples
áreas del cerebro y sus implicaciones para el procesamiento neural en el
sistema visual. Se destaca el uso de registros simultáneos de grandes
poblaciones neuronales para investigar cómo se codifica y procesa la
información visual en el cerebro. Al estudiar la actividad de múltiples
áreas cerebrales, el artículo tiene como objetivo desvelar los mecanismos
subyacentes a la percepción visual a nivel cerebral y proporcionar ideas
sobre la base neural del procesamiento visual. Los hallazgos de esta
investigación contribuyen al campo más amplio de la neurociencia y
tienen implicaciones para entender los trastornos visuales y desarrollar
intervenciones terapéuticas.
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Visual Coding across Brain Areas

1. Introduction
Nearly a century ago, Lord Adrian and his colleagues
conducted pioneering recordings of sensory and motor
neurons, leading them to propose that stimuls proper-
ties are encoded by spiking rates (Adrian & Zotterman,
1926; Adrian, 1929). Fueled by Hubel’s new Tugsten
electrode (Hubel, 1957), in second half of the 1900s,
Hubel and Wiesel demonstrated that rate coding in iso-
lated neurons in the primary visual cortex (V1; Hubel &
Wiesel, 1959, 1968). Using such technological advance-
ment, they supported an emerging concept in sensory
systems termed receptive field (Powell & Mountcastle,
1959). Classically, receptive fields are regions of sen-
sory space that elicit a response from a sensory neuron
(Hubel & Wiesel, 1962; Powell & Mountcastle, 1959;
Ringach, 2004). In vision, a respective field is the spatial
area in which the presence of a light source will modulate
the firing rate of that neuron. Since the 1990s, we have
a period marked by paramount and sustainable techno-
logical developments to provide simultaneously record-
ing large neuronal populations. (Csicsvari et al., 2003;
Nicolelis et al., 1997; Nicolelis et al., 2003; Stevenson &
Kording, 2011; Steinmetz et al., 2021). Based on such si-
multaneous recordings of neuronal populations, a novel
sensory coding perspective emerged, which expanded
the understanding of the nervous. Instead only based
on which could be reached from recordings of isolated
neurons, that new approach if to study sensory coding is
based on patterns observed from neuronal populations,
main on their spiking activity (Hung et al., 2005; Vas-
concelos et al., 2011).

In recent technological advancements for neural record-
ings, certain methods leverage silicon-based technolo-
gies. These techniques empower us to perform record-
ings in which a single invasive aperture can accommo-
date multiple recording sites, arranged with microme-
ter precision, typically densely packed. This capability
leads to what we refer to as “dense recordings”. Con-
sequently, these silicon-based technologies have facili-
tated the simultaneous and dense recording of a unprece-
dented number of neurons, allowing for the distribution
of recording sites across multiple brain areas (Hong &
Lieber, 2019; Stevenson & Kording, 2011). Neuropix-
els are among these silicon-based probes which provide
high- count of sites arranged along several millimeters
(Durand et al., 2023; Jun et al., 2017; Steinmetz et al.,
2018; Steinmetz et al., 2021). Such a great space reach
enables us to record multiple areas in ‘small’ brains. For
instance, their recordings usually provide several hun-
dreds of well isolated neurons from multiple brain areas
of rodents, mainly from mouse brains.

2. Methods
In Figure 1(a) we provide a comprehensive overview of
various recording periods. These include 60 minutes

of exposure to reward-accompanied natural images, 25
minutes to synthetic images (Gabors), 5 minutes to a
gray screen (spontaneous), and an additional 60 min-
utes to natural images without rewards.

Once mice have been adequately trained in the task,
they proceed to execute the task while simultaneously
recording brain activity through the utilization of Neu-
ropixels probes. This allows for the simultaneous mea-
surement of both neural activity and behavior. Each indi-
vidual mouse participates in two experimental Neuropix-
els sessions. In one of these recording sessions, the mice
engage in the task using a collection of eight natural scene
images that they were exposed to during their training.

This dataset contains recordings that were conducted
using Neuropixels 1.0 probes. We performed the inser-
tion of up to 6 probes simultaneously in each mouse
over a period of two consecutive recording days. Follow-
ing the completion of the first recording day, the probes
were carefully removed and the mouse was subsequently
returned to its designated home cage. Thereby resulting
in a total of 300-350 recording sites per probe. Table 1
presents an overview of the sessions studied. For each
analyzed session, the sex of the animal, age in days, the
number of neuronal units from that session, the recorded
and selected areas for the study, as well as the analyzed
image group (G or H), are listed.

2.1 Peri-Stimulus Time Histogram
The PSTH (Peri-Stimulus Time Histogram) is a graph-
ical representation of a neuron’s average firing rate over
time, typically in response to a repeated stimulus or
set of stimuli. The general mathematical formulation of
the PSTH involves counting the neuron’s spike events
in small time intervals and then normalizing by the total
stimulus duration or the number of trials. Here is the
general mathematical formulation:

Let R(t) be the instantaneous firing rate (or rate
density) of the neuron at time t, and N(t) be the number
of spikes occurring in the time interval [t, t∆t], where ∆t
is a small-time interval.

The instantaneous firing rate is calculated as:

R(t) = lim
∆t→0

N(t)
∆t

(1)

The PSTH is constructed by summing the number of
spikes in discrete time intervals, typically bins, and nor-
malizing by the bin width and the total number of trials:

PSTH(t) = 1
N

N∑
i=1

1
∆t

∑
j

Sij(t)

Where PSTH(t) is the value of the PSTH at a specific
time interval t, N is thetotalnumberof trialsor repetitions
of the stimulus, Sij(t) is a function that is 1 if a spikeoccurs
in trial i in the time interval t and 0 otherwise and ∆t is
the bin width in which spikes are counted.

int.j.psychol.res | doi: 10.21500/20112084.7390 55

https://revistas.usb.edu.co/index.php/IJPR/index


Visual Coding across Brain Areas

Table 1

Overview of Selected Sessions
ID Sex Age Units Areas Group

1055403683 M 144 945 CA1, CA3, DG, LGv, LP, MGd, MGm, MGv, PIL, POL, PoT,
SGN, SPFp, TH, VISal, VISam, VISl, VISp, VISpm, VISrl H

1055415082 F 144 900 CA1,CA3, DG, HPF, LP, MGd, MGm, MGv, PIL, POL, SUB,
TH, VISal, VISam, VISl, VISp, VISpm, VISrl H

1130349290 F 165 1170 CA1, CA3, DG, LGd, LP, MB, MGm, MGv, PoT, SGN, TH,
VISal, VISam, VISl, VISp, VISpm, VISrl G

1120251466 M 131 1497 CA1, CA3, DG, LGd, LP, MGd, MGm, MGv, PIL, ProS,
SGN, SUB, VISal, VISam, VISl, VISp, VISpm, VISrl G

1067781390 M 132 1165
CA1, CA3, DG, HPF, LGd, LP, MB, MGd, MGm, MGv, PIL,
POL, PoT, ProS, SGN, SUB, TH, VISal, VISam, VISl, VISp,
VISpm, VISrl

H

1063010385 M 134 1049 CA1, CA3, DG, LGd, LP, MB, MGm, MGv, PIL, POL, PoT,
PP, SGN, TH, VISal, VISam, VISl, VISp, VISpm, VISrl H

1044594870 F 152 1201 CA1, CA3, DG, HPF, LP, MB, MGd, MGm, MGv, MRN,
PIL, POL, PP, TH, VISal, VISl, VISp, VISpm, VISrl H

1118512505 F 139 982 CA1, DG, LP, MGd, MGm, MGv, PIL, PoT, ProS, SGN,
SUB, TH, VISal, VISam, VISl, VISp, VISpm, VISrl G

1117148442 M 132 1091 CA1, CA3, DG, HPF, LP, MB, MGd, POL, ProS, SGN, SUB,
TH, VISal, VISam, VISl, VISp, VISpm, VISrl G

1081431006 F 171 1295 CA1, CA3, DG, Eth, HPF, LGd-co, LGd-sh, LP, MGm, MGv,
PIL, POL, PoT, PP, ProS, SGN, SNc, SPFp, SUB, TH, VISal,
VISam, VISl, VISp, VISpm, VISrl

H

Note. ID refers to the identifier of the analyzed session; Sex to the animal’s gender; Age to the days of the
animal’s life; Neuronal Units to the number of neurons recorded in the session; Areas to the studied brain
regions; Group to the batch of images reviewed, marked as G or H. Related Table 2 provides the acronyms used,
with their respective full meanings and the macro area to which they belong.

2.2 Gaussian Naive Bayes Classifier
Herein, the Gaussian Naive Bayes classifier was imple-
mented using the model termed GaussianNB from Python
scikit-learn. It is based on Bayes’ theorem and is com-
monly used for classification tasks in machine learning.
The mathematical formulation for Gaussian Naive Bayes
can be described as follows:

Let’s assume we have a dataset with N samples, each
belonging to one of K classes. We represent the feature
vector for each sample as xi, where i is the sample index,
and xi is a vector of D features: xi = [xi1,xi2, . . . ,xiD].

In Gaussian Naive Bayes, we make the following as-
sumptions:

1. Gaussian Distribution: The features xij within
each class follow a Gaussian (normal) distribution.
In this study xij is the j-th time bin in the i-the
instantaneous firing rate pattern, according to de-
fined in 1;

2. Conditional Independence (Naive Assump-
tion): Features are conditionally independent within
each class, meaning that the presence or value of
one feature does not affect the presence or value
of another feature within the same class. This is
a simplifying assumption known as naive Bayes;

The goal is to classify a new data point, xnew, into
one of the K classes. Here’s the mathematical formula-
tion for Gaussian Naive Bayes:

1. Prior Probability: Calculate the prior probabil-
ity for each class P (Ck), where k ranges from 1 to
K. This represents the probability of each class
occurring in the dataset;

2. Likelihood: For each class Ck, calculate the like-
lihood P (xnew|Ck), which represents the probabil-
ity of observing the feature vector xnew given that
the class is Ck. This is done using the Gaussian
probability density function for each feature:

P (xnew|Ck) =
D∏

j=1

1√
2πσ2

kj

exp

{
−

(xnew,j − µkj)2

2σ2
kj

}

where µkj is the mean of feature j for class Ck,
and σ2 is the variance of feature j for class Ck.

3. Posterior Probability: Use Bayes’ theorem to
calculate the posterior probability for each class
given the new data point:

P (Ck|xnew) = P (Ck) ·P (xnew|Ck)
P (xnew)

int.j.psychol.res | doi: 10.21500/20112084.7390 56

https://revistas.usb.edu.co/index.php/IJPR/index


Visual Coding across Brain Areas

where P (Ck) is the prior probability for class Ck,
P (xnew|Ck) is the likelihood, and P (xnew) is the
evidence or normalization constant.

4. Classification: Classify the new data point as
belonging to the class with the highest posterior
probability:

Predict Class = argmaxP (Ck|xnew)

2.3 Pairwise Spiking Correlation
The timescale of spiking synchronization has been pro-
posed in 10–30 ms. However, during the recordings,
slow oscillations (frequencies ≪ 30 Hz) are present in
spiking data (Renart et al., 2010). Thus, such record-
ing artifact demands filtering procedure over the spik-
ing data, before the more precise pairwise spiking cor-
relation. Therefore, given a pair of instantaneous fir-
ing rate, such as described in Eq. 1, Ri(t) and Rj(t),
we calculated the corresponding pairwise spiking corre-
lation, first by convolving each time-series with a proper
Mexican-Hat filter, and then we calculated the Pearson
correlation over the filtered time-series, zero-mean R̂i(t)
and R̂j(t), by:

ri,j =
r̂i · r̂j

σi ·σj
(2)

where r̂k is the vector representation of the k-th
filtered time-series, R̂k(t), and σk is its corresponding
standard-deviation.

3. Results
Herein, receptive fields refer to the visual receptive fields
in the mouse visual cortex. These receptive fields are
characterized by their selectivity for specific stimulus pa-
rameters such as orientation and spatial frequency. The
spatial scale of mouse receptive fields is larger compared
to other species, but they still exhibit similar selectivity
to stimulus parameters (Niell & Stryker, 2008). The cur-
rent studies have explored more in detail the receptive
fields in the primary visual cortex. Section 3.1 shows an
initial detailed description of the receptive fields within
large neuronal population in the visual cortex, simulta-
neously recorded, beyond the primary visual cortex.

The peristimulus time histogram (PSTH) is a valu-
able tool for analyzing the consistency of spiking responses
of neuronal populations for a given event. In the current
study, the events were visual stimuli from different classes:
natural images and synthetic images (Gabor), both with
a duration of 2.5 s, 100 samples/session/
class, randomly selected. The primary novelty of this
study was the simultaneous observation of spiking re-
sponses of neuronal populations across multiple brain
areas under well-defined visual stimuli. In section 3.2,
we evaluated brain areas and categorized them into three
main regions: visual cortex, thalamus, and hippocampus,

details of which are provided in Table 2. This table in-
cludes the primary area, the corresponding subregions
for each area, their specific acronyms, and the number of
neurons recorded in each subarea. It is important to note
that, in total, the recordings encompassed 11295 neurons.

3.1 Receptive Fields along the Visual Cortex
In Figure 1 we present an exploration of spiking activity
along the visual cortex (VIS). The visual cortex is di-
vided into distinct regions: VISp (primary visual cortex),
VISpm (posteromedial), VISl (lateromedial), VISrl (ros-
trolateral), VISal (anterolateral), and VISam (anterome-
dial). In Figure 1(b) we showcase samples of 945 identi-
fied receptive fields across the visual cortex, representing
a subset of 4650 recorded units in the group data (10
sessions). The distribution of identified receptive fields
is as follows: #VISal=177, #VISam=110, #VISl=257,
#VISp=173, #VISpm=143, and #VISrl=85. In (c), we
analyze spiking correlation structures along the visual
cortex. Notably, we report average correlation values (Eq.
2) for different regions: VISal = .0167, VISam = .0052,
VISl = .0164, VISp = .0164, VISpm = .0071, and VISrl
= .0114. These correlation values provide insights into
the functional relationships between different regions of
the visual cortex. The figure provides a comprehensive
view of spiking activity and correlation structures within
the visual cortex, shedding light on its response patterns
under spontaneous activity along the mouse visual cortex
in head-fixed recordings.

3.2 Spiking Response for Different Visual Stimuli along
Brain Areas

Visual cortex. Figure 2 shows the population group
data PSTH (peristimulus time histogram) in different
regions of the (VIS p = primary visual cortex, pm =
posteromedial, l = lateromedial, rl = rostrolateral, al
= anterolateral, am = antero-medial) under different vi-
sual stimuli. The number of sessions n is indicated in
each plot. The vertical axis represents the mean instan-
taneous firing rate of the population (spikes/neurons/sec-
ond). The results showed that PSTH responses to nat-
ural stimuli were stronger and more sustained than the
PSTH responses to synthetic stimuli in all regions of
the visual cortex. This suggests that neurons in the vi-
sual cortex are more responsive to natural stimuli than
to synthetic stimuli. Additionally, the PSTH responses
to natural stimuli showed a greater degree of variabil-
ity across different regions of the visual cortex than the
PSTH responses to synthetic stimuli. This suggests
that different regions of the visual cortex are differen-
tially involved in processing natural stimuli. The pri-
mary visual area has the ability to discriminate spatial
details, such as orientation (Marshel et al., 2011; Prusky
& Douglas, 2004). The lateromedial area (lm) is more
specialized in processing fast movements, as its neurons
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Table 2

Detailed Information from Selected Recorded Areas
Area Subarea Acronym Neurons

Visual Cortex

primary visual cortex VISp 897
posteromedial area VISpm 806
anterolateral area VISal 748
lateromedial area VISl 915
rostrolateral area VISrl 537
anteromedial area VISam 747

Total 4650
Hippocampus cornu ammonis 1 CA1 2110

cornu ammonis 3 CA3 586
dentate gyrus DG 852
subiculum SUB 397
hippocampal formation HPF 112
prosubiculum ProS 69

Total 4136
Thalamus posterior lateral thalamic

nucleus
LP 322

ventral medial geniculate
complex

MGv 584

medial medial geniculate
complex

MGm 175

dorsal medial geniculate
complex

MGd 219

posterior intralaminar tha-
lamic nucleus

PIL 114

suprageniculate nucleus SGN 284
thalamus TH 146
posterior limitans thala-
mic nucleus

POL 226

posterior triangular thala-
mic nucleus

PoT 128

lateral geniculate complex
dorsal part

LGd 200

lateral geniculate complex
ventral part

LGv 24

peripeduncular nucleus PP 44
ethmoid thalamic nucleus Eth 37
subparafascicular nucleus
parvicellular part

SPFp 6

Total 2509
Total 11295

have a higher preference for elevated temporal frequen-
cies, a characteristic shared with the anteromedial region
(am). The anterolateral (al) region of the visual cortex is
functionally distinct from other areas and is specialized
for motion-related computations (Marshel et al., 2011).
This area, along with the rostrolateral (rl) and anterome-
dial (am) regions, contains neurons highly selective for
the direction of movement and integrates the parietal
cortex, associated with spatial discrimination and navi-
gation tasks (Kravitz et al., 2011; Marshel et al., 2011;
Ungerleider and Mishkin, 1982; Whitlock et al., 2008).

The posteromedial area mediates visual information be-
tween primary visual cortex and the retrosplenial cortex
in rodents (Marshel et al., 2011; Roth et al., 2012; Wang
& Burkhalter, 2007). The highest average instantaneous
firing rate for natural stimuli was observed in the primary
region (p), followed by the lateromedial (l) and antero-
lateral (al) regions. The rostrolateral region (rl) comes
next, and, finally, the posteromedial (pm) and antero-
medial (am) regions. On the other hand, the highest av-
erage instantaneous firing rate for synthetic stimuli was
observed in the anterolateral region (al), followed by the
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lateromedial (lm), rostrolateral (rl), anteromedial (am),
primary (p), and posteromedial (pm) areas. This sug-
geststhat the primary region of the visual cortex is more
involved in processing natural stimuli than the anterior
region of the visual cortex.

Table 3 shows that, in general terms, significant differ-
ences were identified between the PSTHs of the regions
recorded in the visual cortex for natural stimuli (p <
.01, Mann-Whitney), except between the lateromedial
regions (VISl) and posteromedial (VISpm) (p = .2177,
Mann-Whitney). This suggests that the distributions of
response amplitudes in average population activity do
not vary significantly throughout the visual cortex.

Table 3

P-values Obtained from the Mann-Whitney Test
from Different Regions of the Visual Cortex

VISal VISam VISrl VISl VISp VISpm
VISal – .0 .0 .0 .0 .0
VISam – – .0 .0 .0 .0
VISrl – – – .0 .0 .0
VISl – – – – .0 .2177
VISp – – – – – .0003
VISpm – – – – – –
Note. The values were used to compare the PSTH
values derived from different regions of the visual cor-
tex (VIS al = anterolateral, am = anteromedial, rl =
rostrolateral, l = lateromedial, p = primary visual
cortex, pm = posteromedial) for natural stimuli.

Hippocampus. Based on the results on from vi-
sual spiking activity, we decided to explore the consis-
tency of the spiking response pattern for visual stimuli
along hippocampus areas (HPF, CA1, CA3, DG, SUB,
ProS), such as detailed in Figure 3. The number of ses-
sions (n = 10, 9, 6, 5, respectively) is indicated on each
plot. The results show that the PSTH responses to nat-
ural stimuli are stronger and more sustained than the
PSTH responses to synthetic stimuli in most regions of
the hippocampus. This suggests that neurons in the hip-
pocampus are more responsive to natural stimuli than to
synthetic stimuli. However, the difference in PSTH re-
sponses between natural and synthetic stimuli is less pro-
nounced in the SUB region of the hippocampus. The hip-
pocampal formation (HPF), composed of the hippocam-
pus HP, dentate gyrus (DG), and subiculum (SUB), is
crucial for the creation of episodic memories, albeit not
being their ultimate storage location (Kandel, 2013). The
hippocampus is pivotal for long-term memories, partakes
in object recognition, episodic memory, and is indispens-
able for spatial representation and navigation (Andersen
et al., 2007; Kandel, 2013). The CA1 area is vital for the
consolidation and retrieval of long-term explicit memory,
while the CA3 area manages the initial encoding and
storage of in- formation, also playing a role in memory
formation and retrieval through pattern completion and

separation (Kandel, 2013). The DG in the hippocam-
pus is essential in the creation of new memories and in
distinguishing between similar memories or experiences
(Kandel, 2013). The SUB, a part of the subicular com-
plex, processes information about space, movement, and
memory, and regulates stress response (O’Mara, 2005).
Finally, the ProS is the transition zone between the CA
fields and the SUB, being relevant for the memory sys-
tem of the medial temporal lobe and connected to neu-
rological conditions such as Alzheimer’s and epilepsy,
also being associated with emotion, motivation, reward,
drug dependence, stress, anxiety, and fear (Amaral et al.,
1990; Ding, 2013).The highest average instantaneous fir-
ing rate for natural stimuli is found in the ProS region
of the hippocampus, while the highest average instan-
taneous firing rate for synthetic stimuli is found in the
CA1 region of the hippocampus. This suggests that the
ProS region of the hippocampus is more involved in the
processing of natural stimuli, whereas that CA1 region
is more involved in the processing of synthetic stimuli.
In summary, the findings depicted in Figure 3 indicate
that hippocampal neuronal populations exhibit a higher
degree of responsiveness to natural stimuli in compari-
son to synthetic ones. Moreover, the spiking response
patterns to visual stimuli exhibit a diverse level of con-
sistency throughout the areas of the hippocampal forma-
tion. Table 4 shows that, in general terms, significant
differences were identified between the PSTHs of the re-
gions recorded in the hippocampus for natural stimuli
(p < .01, Mann-Whitney), except between the hippocam-
pal formation (HPF) and prosubiculum ProS (p = .00350,
Mann- Whitney). This suggests that the distributions
of response amplitudes in average population activity do
not vary significantly throughout the hippocampus.

Table 4

P-values Obtained from the Mann-Whitney Test
from Different Regions of the Hippocampus

HPF CA1 CA3 DG SUB ProS
HPF – .0 .0 .0 .0 .0
CA1 – – .0 .0 .0 .0
CA3 – – – .0 .0 .0
DG – – – – .0 .0

SUB – – – – – .0
ProS – – – – – –
Note. Values were used to compare the P ST H val-
ues derived from different regions of the hippocampus
(HPF, CA1, CA3, DG, SUB, ProS) for natural stimuli.

Thalamus. Figures 4 and 5 present the population
PSTH (Peri-stimulus Time Histogram) group data a-
cross different Thalamic (TH) regions: (TH, LGd, LGv,
MGd, MGvm, MGv, LP, SGN, PIL, POL, PoT, PP, Eth,
SPFp) under varying visual stimuli. The session number
n is depicted in each graph. The results demonstrated
stronger and more sustained PSTH responses to natu-
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Table 5

The p-values obtained from the Mann-Whitney test from Different Regions of the Thalamus
TH LGd LGv MGd MGm MGv LP SGN PIL POL Pot PP Eth SPFp

TH – .0 .0 .0 .0 .0 .0 .0023 .0 .0 .0 .0 .0 .0
LGd – – .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
LGv – – – .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
MGd – – – – .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
MGm – – – – – .0 .0 .0 .0 .0 .0 .0 .0 .0
MGv – – – – – – .0 .0 .0 .0 .0316 .0 .0 .0
LP – – – – – – – .0 .0 .0 .0 .0 .0 .0

SGN – – – – – – – – .0 .0 .0 .0 .0 .0
PIL – – – – – – – – – .0 .0 .0 .0 .0
POL – – – – – – – – – – .0 .0 .0 .0
PoT – – – – – – – – – – – .0 .0 .0
PP – – – – – – – – – – – – .0 .0
Eth – – – – – – – – – – – – – .0
SPFp – – – – – – – – – – – – – –

Note. Values were used to compare the P ST H values derived from different regions of the hippocampus (HPF, CA1,
CA3, DG, SUB, ProS) for natural stimuli.

ral stimuli com- pared to synthetic ones in most thala-
mic regions, indicating a higher responsiveness of thala-
mic neurons to natural stimuli. The Lateral Posterior
Thalamic Nucleus (LP), which seems to be associated
with determining visual saliency and visually guided be-
haviors, is involved in multisensory processing of aver-
sive stimuli-related information alongside the dorsal por-
tions of the Posterior Thalamic Nuclei (Po) (Allen et
al., 2016). The Medial Geniculate Complex, encompass-
ing ventral (MGv), dorsal (MGd), and medial (MGm)
subnuclei, predomitly relates to auditory functions, con-
veying information from the midbrain to the auditory
cortex (LeDoux et al. , 1984; Watson et al., 2011). The
Posterior Intralaminar Thalamic Nucleus (PIL) is asso-
ciated with the regulation of information transmission
such as cognition, alertness, consciousness, and pain sig-
nal processing (Arnts et al., 2023). The Supragenicu-
late Nucleus (SGN) contributes to the amalgamation of
visual, auditory, and somatosensory information, espe-
cially nociceptive, from varied sources, projecting them
to the amygdala (Watson et al., 2011). It might also
be associated with generating visual information for the
auditory cortex (Smith et al., 2010). The Posterior
Limitans Thalamic Nucleus (POL) is implicated in the
processing of visual and somatosensory information and
aversive stimuli (Paxinos & Franklin, 2001; Watson et
al., 2011). The Posterior Triangular Thalamic Nucleus
(PoT) is primarily linked to the perception of pain sen-
sations (Gauriau & Bernard, 2004). The Lateral Genic-
ulate Complex, both dorsal (LGd) and ventral (LGv)
parts, belongs to the category of thalamus sensory pro-
jection nuclei and is essential for normal visual process-
ing. It has extensive connectivity, projecting to and
receiving inputs (Covington & Al Khalili, 2019). The
Peripeduncular Nucleus (PP) is associated with motor
performance (Zrinzo et al., 2007). The Subparafasci-

cular Nucleus Parvicellular Part (SPFp) has a medial
part implicated in the relay of genitosensory informa-
tion crucial for male sexual behavior, while its lateral
part is engaged in processing auditory and visual sig-
nals related to fear-conditioned responses (Coolen et al.,
2003). The Ethmoid Thalamic Nucleus (Eth) refers to a
group of centrally located cells in the posterior portion of
the mouse thalamus (Paxinos & Franklin, 2001; Watson
et al., 2011). The highest average instantaneous firing
rate for natural stimuli was observed in the SPFp region,
followed by the PP region. These regions also demon-
strated the highest firing rates for synthetic stimuli, sug-
gesting their significant involvement in processing both
stimuli types. Subsequently, the LP region has a high
average instantaneous firing rate for natural stimuli com-
pared to synthetic, indicating its greater involvement in
processing natural stimuli. Table ?? shows that, gen-
erally, significant differences were observed between the
PSTHs of the regions recorded in the thalamus for nat-
ural stimuli (p < .01, Mann-Whitney), except between
the ventral medial geniculate complex (MGv) and the
posterior triangular thalamic nucleus (PoT; p = .0316,
Mann-Whitney). This suggests that the distributions
of response amplitudes in average population activity
do significantly vary throughout the thalamus.

3.3 Spiking Patterns Classification for Different Kinds
of Visual Stimuli along Brain Areas

Given the striking differences observed among the peri-
stimulus time histograms (PSTHs) elicited by natural
and synthetic stimuli, we decided to assess the separa-
bility of spiking patterns in response to these distinct
stimulus types. This estimation involved a binary clas-
sifier model: Naive Bayes. This model was pro- vided
with firing rate patterns from their respective neuronal
populations, each consisting of a 250 ms duration and
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sampled at 1 ms intervals, and was appropriately labeled
(Hung et al., 2005; Vasconcelos et al., 2011). The evalu-
ation of classification performance was based on the av-
erage area under the Receiver Operating Characteristic
(ROC) curve across 20 trials (Fawcett, 2006), conducted
for each specific data context (session/area).

Visual Cortex. The first graph in Figure 6 displays
a boxplot that depicts the average area under the ROC
curve (AUROC) for Naïve Bayes classification of natural
versus synthetic visual stimuli across various regions of
the visual cortex, identified as anterolateral (al), antero-
medial (am), rostrolateral (rl), lateromedial (l), primary
visual cortex (p), and posteromedial (pm). The dot-
ted gray line in the graphs signifies the chosen AUROC
threshold considered as indicative of high-quality classi-
fication (> .75). All visual cortex areas were observed to
exceed this threshold, reflecting the Naive Bayes method’s
effectiveness in classifying stimuli by their origin. These
findings support and broaden previous research on the
encoding of visual stimuli within the mammalian visual
cortex. The results indicate that the AUROC for natural
stimuli is consistently higher than for synthetic across all
studied regions, suggesting a higher accuracy of Naïve
Bayes in distinguishing natural from synthetic stimuli
as compared to different types of synthetic stimuli. As
shown in Table 6, statistically significant differences were
noted in the AUROC averages for natural stimuli among
the recorded regions (p < .01, Mann-Whitney test), with
the exception of comparisons between the al and rl re-
gions (p = .1206, Mann-Whitney test) and between am
and al (p = .0989, Mann-Whitney test).

Table 6

P-values Obtained from the Mann-Whitney Test
from Classifications using the Naïve Bayes Clas-
sifier across Different Regions of the Visual cortex

VISal VISam VISrl VISl VISp VISpm
VISal – .0 .0 .0047 .1206 .0
VISam – – .0989 .0 .0 .0
VISrl – – – .0 .0 .0
VISl – – – – .0 .0
VISp – – – – – .0054
VISpm – – – – – –
Note. Values were used to compare the AUC values
derived from classifications using the Naïve Bayes
classifier across different regions of the visual cortex
(VIS al = anterolateral, am = anteromedial, rl =
rostrolateral, l = lateromedial, p = primary visual
cortex, pm = posteromedial).

Hippocampus. In assessing the discrimination abil-
ity between two categories of visual stimuli applied to
the hippocampus, our findings indicate that the HPF,
CA1, and SUB regions demonstrate high classification
quality (AUROC > .75). This is illustrated in the cen-
tral boxplot in Figure 6, which displays the average area

under the ROC curve for Naive Bayes classification be-
tween natural and synthetic visual stimuli in different
regions of the hippocampus: (HPF, CA1, CA3, DG,
SUB, ProS). The lowest AUCROC average is observed
in the ProS region (AUROC < .7), with intermediate
results for the CA3 and DG regions. From the stand-
point of sensory information processing, particularly vi-
sual stimuli, hippocampal neurons are most renowned
for encoding location, with their place cells (O’Keefe,
1976). Just as Bourboulou et al. discovered that the
introduction of local visual cues enhances the resolu-
tion of spatial encoding in the hippocampus, resulting
in reduced local fields and heightened spatial selectivity
(Bourboulou et al., 2019), our current results expand
the understanding of visual stimuli encoding in differ-
ent areas of the hippocampus. Table 7 reveals signif-
icant differences between the AUROC averages of the
regions recorded in the hippocampus for natural stim-
uli (p < .01, Mann-Whitney), except between HPF and
CA1 (p = .8805, Mann-Whitney), between HPF and
SUB (p = .0502, Mann-Whitney), and between CA3 and
DG (p = .8807, Mann-Whitney).

Table 7

P-values Obtained from the Mann-Whitney Test
from lCassifications using the Naïve Bayes Clas-
sifier

HPF CA1 CA3 DG SUB ProS
HPF – .8805 .0003 .0005 .0502 .0
CA1 – – .0 .0 .0047 .0
CA3 – – – .8807 .0 .0
DG – – – – .0 .0

SUB – – – – – .0
ProS – – – – – –
Note. Values were used to compare the AUC values
derived from classifications using the Naïve Bayes clas-
sifier across different regions of the hippocampus (HPF,
CA1, CA3, DG, SUB, ProS).

Thalamus. The last boxplot shown in Figure 6
presents the average area under the ROC curve for the
thalamic areas: (TH, LGd, LGv, MGd, MGvm, MGv,
LP, SGN, PIL, POL, PoT, PP, Eth, SPFp). The re-
sults generally demonstrate high classification quality
(AUROC > .75) for the areas: TH, LGd, LGv, MGv,
LP, SGN, PP, and Eth. For the areas PIL, POL, and
PoT, there were intermediate results with average AU-
ROC between .7 and .75. However, for the regions: MGd,
MGvm, and SPFp, the results did not demonstrate good
performance. These results show that it is possible to
distinguish between natural and synthetic visual stim-
uli and encourage understanding about the encoding of
visual stimuli in different areas of the thalamus. Table
8 reveals significant differences between the average AU-
ROCs of the regions recorded in the thalamus for natural
stimuli (p < .01, Mann- Whitney), except between TH
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Table 8

The p-values Obtained from the Mann-Whitney Test from Classifications using the Naïve Bayes Classifier
across Different Regions of the Thalamus

TH LGd LGv MGd MGm MGv LP SGN PIL POL Pot PP Eth SPFp
TH – .0 .0 .0 .0 .0 .0 .0023 .0 .0 .0 .0 .0 .0
LGd – – .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
LGv – – – .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
MGd – – – – .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
MGm – – – – – .0 .0 .0 .0 .0 .0 .0 .0 .0
MGv – – – – – – .0 .0 .0 .0 .0316 .0 .0 .0
LP – – – – – – – .0 .0 .0 .0 .0 .0 .0

SGN – – – – – – – – .0 .0 .0 .0 .0 .0
PIL – – – – – – – – – .0 .0 .0 .0 .0
POL – – – – – – – – – – .0 .0 .0 .0
PoT – – – – – – – – – – – .0 .0 .0
PP – – – – – – – – – – – – .0 .0
Eth – – – – – – – – – – – – – .0
SPFp – – – – – – – – – – – – – –

Note. Values were used to compare the AUC values derived from classifications using the Naïve Bayes classifier across
different regions of the thalamus (TH, LGd, LGv, MGd, MGvm, MGv, LP, SGN, PIL, POL, PoT, PP, Eth, SPFp).

and LP (p = .0544, Mann-Whitney), TH and SGN (p =
.6432, Mann-Whitney), TH and Eth (p = .9756, Mann-
Whitney), MGm and POL (p = .1202, Mann-Whitney),
MGm and PoT (p = .15, Mann-Whitney), MGv and LP
(p = .8432, Mann-Whitney), MGv and PP (p = .2052,
Mann-Whitney), LP and SGN (p = .5331 Mann-Whit-
ney), LP and Eth (p = .2406, Mann-Whitney), SGN and
Eth (p = .7005, Mann-Whitney), PIL and POL (p =
.0548, Mann-Whitney), PIL and PoT (p = .0833, Mann-
Whitney), PIL and Eth (p = .0267, Mann-Whitney), POL
and PoT (p = .5654, Mann-Whitney), and PoT and Eth
(p = .1125, Mann- Whitney).

3.4 Distributed Encoding of Visual Stimulus across
the Recorded Regions

Given the relevant results in evaluating the separability
of firing patterns in response to these different types of
stimuli, we sought to assess the decoding capability of
the stimulus identity based solely on spike recordings
for an increasing number of neurons randomly chosen,
ranging from 2 to 40. This estimation involved the Naive
Bayes classifier, with 10-fold cross-validation, fed with
firing rate patterns from their respective neuronal pop-
ulations, with random samples of 250 samples from the
population, each with a duration of 250 ms and sampled
at 1 ms intervals. The evaluation of the classification
performance was based on the average area under the
Receiver Operating Characteristic (ROC) curve over 20
attempts for each amount of neurons (Fawcett, 2006),
conducted for each specific data context (session/area).

Visual Cortex. Figure 7 presents the results of
neuron dropping in several regions of the visual cortex,
labeled as VIS: al = anterolateral, am = anteromedial,
rl = rostrolateral, l = lateromedial, p = primary visual
cortex, pm=posteromedial.

It depicts the relationship between the average ROC
curve from the 20 trials on the y-axis and the respective
value of evaluated neurons on the x-axis. The curves
indicate the commencement of a stabilization process of
the average AUROC at around 20 to 30 neurons across
all regions of the visual cortex. This observation implies
that identifying the visual stimulus is plausible with a
minimal neuron set, containing specific information per-
tinent to the stimulus.

Hippocampus. For the hippocampal region, the
results are presented in Figure 8 with the regions HPF,
CA1, CA3, DG, SUB, ProS. In it, the relationship be-
tween the average ROC curve on the y-axis of the 20
trials, and on the x-axis the respective value of evalu-
ated neurons is displayed. The curves show that the
classification processes begin a stabilization process of
the average AUROC for most of the hippocampal re-
gions at approximately 20 to 35 neurons. This suggests
that the identification of the visual stimulus is possible
with a reduced set of neurons; these results validate and
expand the perspective of visual stimulus encoding in
hippocampal regions, even when analyzing a small set
of neurons.

Thalamus. Finally, for the different regions of the
thalamus: TH, LGd, LGv, MGd, MGvm, MGv, LP,
SGN, PIL, POL, PoT, PP, Eth, SPFp, Figures 9 and 10
display the relationship between the average of the ROC
curve on the y-axis of the 20 trials, and on the x-axis the
respective value of evaluated neurons. The curves show
that the classification processes begin a stabilization pro-
cess of the average AUROC for most of the thalamic
regions from a random set of approximately 10 neurons,
up to regions that gain this stability later, at approxi-
mately 30 neurons, such as MGv, SGN, and Eth. Even
so, the results present the possibility of decoding with
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a small set of neurons (< 40) for the thalamic regions,
expanding the perspective of encoding visual stimuli in
these regions.

4. Discussion
Understanding how the brain processes visual informa-
tion can have implications for the development of ad-
vanced artificial intelligence systems that can mimic mam-
mal’s visual perception and recognition, including hu-
man visual perception. The findings of this study can
contribute to the development of more effective treat-
ments for visual disorders and impairments by providing
insights into the neural mechanisms involved in visual
coding. The simultaneous recording of brain wide large
neuronal populations of mammals, as explored in this
paper, can pave the way for the development of more
accurate brain-computer interfaces, allowing individu-
als with motor disabilities to control external devices
using their brain activity. The research on visual cod-
ing in multiple brain areas can also have implications
for the field of neuroscience, helping to deepen our un-
derstanding of how different brain regions interact and
collaborate in processing visual information.

High-density silicon electrodes have begun to trans-
form systems neuroscience (Trautmann et al., 2023). Un-
til 2010, it was hegemonic a view of a cortical processing
based on highly correlated spiking activity (Cohen &
Kohn, 2011). However, more recently, has been demon-
strated that the spiking activity in the visual cortex,
mainly the primary visual cortex, displays a rich and
diverse dynamics (Fontenele et al., 2019), including an
asynchronous spiking activity (Renart et al., 2010; Ecker
et al., 2010). Here, showed an asynchronous spiking ac-
tivity under spontaneous activity based on simultaneous
recordings along the visual cortex, with a tendency for
smaller average spiking correlation in its posteromedial
and anteromedial areas.

Based on high-density and brain-wide recordings from
neuropixels (Jun et al., 2017; Steinmetz et al., 2021),
it was possible to investigate, simultaneously, the vi-
sual coding beyond the visual cortex, including in ar-
eas poorly explored regarding the such subject. Us-
ing machine learning techniques, we have consolidated
the concept that the encoding of relevant functions of
the nervous system is not a localized phenomenon, but
rather a comprehensive process within the brain (Lash-
ley, 1930; Nicolelis & Lebedev, 2009; Vasconcelos et al.,
2011). This principle is evidenced when we observe vi-
sual encoding not only in the visual cortex but also in
regions such as the hippocampus and thalamus. The re-
sults reinforce this view by demonstrating the feasibility
of differentiating between natural and synthetic stimuli
using classifiers, indicating that the encoding of stimuli
extends beyond the areas traditionally associated with
vision, suggesting a more widespread and integrated dis-

tribution of neural activity related to visual perception
throughout the brain. According to Figure 6, among
these areas, only small minority of thalamic and hip-
pocampal regions did not display good information to
classify the kind of visual stimuli. Further, even with a
diverse quality classification along brain areas, the dis-
tribution of information used in visual coding seems to
be equally distributed when observed local sub-regions
of visual cortex, hippocampus and thalamus. There-
fore, based on evidence obtained from comprehensive,
high-density recordings spanning the entire brain, this
study suggests that Lashley’s theories on information
processing in the nervous system be reconsidered. As
for the future work, it suggests investigating the decod-
ing capacity in other brain regions such as the midbrain
and using various natural visual stimuli to explore these
questions further. However, one limitation of this study
is the high computational cost associated with analyzing
these data sets. The extensive resources required neces-
sitate the use of supercomputing to process the results
in a timely manner.
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Appendix

Figure 1

Exploring Spiking Activity along the Visual Cortex

Note. (VIS al = anterolateral, am = anteromedial, rl = rostrolateral, l = lateromedial, p = primary visual
cortex, pm = posteromedial) (a) general overview of different periods of recordings: 60min-long of natural
images rewarded exposure; 25min-long of synthetic images (Gabors); 60min- long of natural images non-
rewarded exposure. (b) samples of a total of 945 identified receptive fields along the visual cortex out of
4650 units (#VISal=177, #VISam=110, #VISl=257, #VISp=173, #VISpm=143, #VISrl=85). (c) spiking
correlation structures along the visual cortex (n = 19659), with the following averages: VISal = .0167,
VISam= .0052, VISl = .0164, VISp = .0164, VISpm = .0071, VISrl = .0114.
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Figure 2

Group PSTH (peristimulus time histogram) Result in Different Regions of the Visual Cortex .
(VIS al=anterolateral, am=anteromedial, rl=rostrolateral, l=lateromedial, p=primary visual cortex,
pm=posteromedial) for two Different Classes of Visual Stimuli

Note. (duration 2.5 s, 100 samples/session/class randomly selected): natural and synthetic (Gabor); number
of sessions (n = 10, n = 9) indicated in each plot; vertical axis with mean instantaneous firing rate of the
population (spikes/neuron/second).
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Figure 3

Group PSTH (peristimulus time histogram) Result in Different Regions of the Hippocampus (HPF, CA1,
CA3, DG, SUB, ProS) for two Different Visual Stimulus Classes

Note. (duration 2.5 s, 100 samples/session/class randomly chosen): natural and synthetic (Ga bor); number
of sessions (n = 10, n = 9, n = 6, and n = 5) indicated on each plot; vertical axis with the mean instantaneous
firing rate of the population (spikes/neuron/second).

int.j.psychol.res | doi: 10.21500/20112084.7390 68

https://revistas.usb.edu.co/index.php/IJPR/index


Visual Coding across Brain Areas

Figure 4

Group PSTH (peristimulus time histogram) Result in Different Regions of the Thalamus (LP, MGv, MGm,
TH, SGN, MGd, LGd, LGv) for two Different Visual Stimulus Classes

Note. (duration 2.5 s, 100 samples/session/class randomly chosen): natural and synthetic (Gabor); number
of sessions (n = 10, n = 9, n = 8, n = 7, n = 5 and n = 1) indicated on each plot; vertical axis with the mean
instantaneous firing rate of the population (spikes/neuron/second).
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Figure 5

Group PSTH (peristimulus time histogram) Result in Different Regions of the Thalamus (PIL, POL, PoT,
PP, Eth, SPFp) for two Different Visual Stimulus

Note. (duration 2.5 s, 100 samples/session/class randomly chosen): natural and synthetic (Gabor); number
of sessions (n = 7, n = 6, n = 3, n = 2, and n = 1) indicated on each plot; vertical axis with the mean
instantaneous firing rate of the population (spikes/neuron/second).
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Figure 6

Boxplot showing the Results of Naïve Bayes Classification with the Total Available Neurons in Different
Regions of the Visual Cortex

Note. (VIS al=anterolateral, am=anteromedial, rl=rostrolateral, l=lateromedial, p=primary visual cortex,
pm=posteromedial), hippocampus (HPF, CA1, CA3, DG, SUB, ProS) and thalamus (TH, LGd, LGv, MGd,
MGvm, MGv, LP, SGN, PIL, POL, PoT, PP, Eth, SPFp) for two different classes of visual stimuli: natural
and synthetic (Gabor); using NB classifier; vertical axis represents the average value of the ROC curve area
for the classification. Dotted gray line at .75 indicates the good classification quality threshold.
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Figure 7

Group Result of Classification in Different Regions of the Visual Cortex

Note. (VIS al=anterolateral, am=anteromedial, rl=rostrolateral, l=lateromedial, p=primary visual cortex,
pm=posteromedial) for two different visual stimulus classes: natural and synthetic (Gabor); Naive Bayes
classifier; number of sessions (n = 10, n = 9) indicated in each plot; vertical axis with the average value of
the ROC curve area for the classification.
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Figure 8

Group result of classification in different regions of the hippocampus (HPF, CA1, CA3, DG, SUB, ProS)
for two different classes of visual stimuli: natural and synthetic (Gabor); Naive Bayes classifier; number of
sessions (n = 10, n = 9, n = 6, and n = 5) indicated in each plot; vertical axis with the average value of the
ROC curve area for the classification.
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Figure 9

Group Result of Classification in Different Regions of the Thalamus

Note. (LP, MGv, MGm, TH, SGN, MGd, LGd, LGv) for two different classes of visual stimuli: natural and
synthetic (Gabor); Naive Bayes classifier; number of sessions (n = 10, n = 9, n = 8, n = 7, n = 5, and n = 1)
indicated in each plot; vertical axis with the average value of the ROC curve area for the classification.
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Figure 10

Group Result of Classification in Different Regions of the Thalamus

Note. (PIL, POL, PoT, PP, SPFp, Eth) for two different classes of visual stimuli: natural and synthetic
(Gabor); Naive Bayes classifier; number of sessions (n = 6, n = 5, n = 3, n = 2, and n = 1) indicated in each
plot; vertical axis with the average value of the ROC curve area for the classification.

int.j.psychol.res | doi: 10.21500/20112084.7390 75

https://revistas.usb.edu.co/index.php/IJPR/index

	Introduction
	Methods
	Peri-Stimulus Time Histogram
	Gaussian Naive Bayes Classifier
	Pairwise Spiking Correlation

	Results
	Receptive Fields along the Visual Cortex
	Spiking Response for Different Visual Stimuli along Brain Areas
	Spiking Patterns Classification for Different Kinds of Visual Stimuli along Brain Areas
	Distributed Encoding of Visual Stimulus across the Recorded Regions

	Discussion
	Acknowledgements
	Appendix

