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Abstract.
The pursuit of a unified theory that captures the intricacies of the brain and mind
continues to be a significant challenge in theoretical neuroscience. This paper presents
a novel, triune framework that utilizes the concept of collective biased random walk
(cBRW). Our approach strives to transcend biological specifics, offering a high-level
abstraction that remains general and applicable across various neural phenomena.
Despite the solid traditional foundation of computational neuroscience, the intricate
delicacy of neural processes calls for a renewed probabilistic approach. We aim
to utilize the intuitive nature of probability concepts —such as the probability of
localization and state, and uniform probability distribution— to study the stochastic
organization of electric charges and signals in the brain. This electrophysiological
intricacy emerges from the seemingly paradoxical reality that tiny electric events,
while random, collectively give rise to predictable, long-range oscillations. These
oscillations manifest in three groups of activation states. Our framework categorizes
the brain as a triune system, accommodating classical, semiclassical, and non-classical
interpretations of both probabilistic phenomena and cBRW models, alongside three
groups of states. We conclude that by appreciating, rather than overlooking, the
tiny random walks of electric charges and signals in the brain, we can gain a triune
mathematical foundation for theoretical brain science, the powerful capabilities of this
organ, and the electromagnetic interfaces we can develop.
Resumen.
La búsqueda de una teoría unificada que capture las complejidades del cerebro y la
mente sigue siendo un desafío significativo en la neurociencia teórica. Este artículo
presenta un nuevo marco trino que utiliza el concepto de caminatas aleatorias
dirigidas colectivas (cBRW). Nuestro enfoque busca trascender los detalles
biológicos, ofreciendo una abstracción de alto nivel que sigue siendo general y
aplicable a diversos fenómenos neuronales. A pesar de la sólida base tradicional de
la neurociencia computacional, la delicadeza intrincada de los procesos neuronales
requiere un enfoque probabilístico renovado. Nuestro objetivo es utilizar la
naturaleza intuitiva de los conceptos de probabilidad, como la probabilidad de
localización y estado, y la distribución de probabilidad uniforme, para estudiar
la organización estocástica de las cargas y señales eléctricas en el cerebro. Esta
complejidad electrofisiológica surge de la realidad aparentemente paradójica de
que pequeños eventos eléctricos, aunque aleatorios, colectivamente dan lugar a
oscilaciones predecibles y de largo alcance. Estas oscilaciones se manifiestan en
tres grupos de estados de activación. Nuestro marco categoriza el cerebro como
un sistema trino, acomodando interpretaciones clásicas, semiclásicas y no clásicas
de fenómenos probabilísticos y modelos de BRW, junto con estos tres grupos de
estados. Concluimos que, al apreciar, en lugar de pasar por alto, las pequeñas cam-
inatas aleatorias de las cargas y señales eléctricas en el cerebro, podemos obtener
una base matemática trina para la ciencia teórica del cerebro, las poderosas ca-
pacidades de este órgano y las interfaces electromagnéticas que podemos desarrollar.
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1. Introduction
The computational and mathematical exploration of the
brain has garnered widespread interest. However, ques-
tions remain: is the brain another biophysical or engi-
neering system? Can we classify the mind as a type of
computational system?

In this context, the notion of probability is pivotal
in science, engineering, and computation (Jaynes, 2003)
as well as in many biological processes, such as ran-
dom walks (Codling, 2008). Probability has also been
suggested as a logic for modeling the measurement pro-
cess (Rossi, 2023). Indeed, probability is a cornerstone
concept in many mathematical and computational neu-
roscience textbooks. The statistical analysis of chan-
nel gating, for instance, involves probabilities associated
with ion channel states (Dayan & Abbot, 2005; Johnston
& Wu, 1995). The spontaneous release of neurotransmit-
ter is a calcium-dependent process governed by proba-
bilistic laws (Johnston & Wu, 1995). At the systemic
level, probabilistic methods (frequentist, Bayesian, etc)
are crucial for modeling significant neural phenomena,
such as encoding and decoding of stimuli (Dayan & Ab-
bot, 2005; Doya et al., 2007), predictive coding and mo-
tor control (Aitchison & Lengyel, 2017), Fisher informa-
tion (Dayan & Abbot, 2005; Doya et al., 2007), the free
energy principle in neuroscience (Friston, 2010) and the
role of uncertainty (Knill, 2004) in neural computation.

Conversely, the brain’s electrical nature is essential
for the rapid and efficient transmission of information
(Hille, 2001; Koch, 1999). This characteristic is present
at various scales, from individual ions (Hille, 2001) to
macromolecules (ion channels), membranes (both intra-
cellular and extracellular), and system-level signals (lo-
cal field potentials or LFP and Electroencephalography
or EEG) (Nunes & Srinivasan, 2006; Buzsaki et al.,
2012). More recently, direct electric communication (ep-
haptic effects) has been acknowledged in numerous brain
processes (Anastassiou & Koch, 2014).

In this paper, we present an approach that underscore
the brain’s probabilistic nature and how it contributes to
the brain electrophysiological complexity. By “electro-
physiologically intricate”, we refer to a complex system
withdiverseandinterconnectedphenomenathat,nonethe-
less produce organized electrophysiological signals. We
adopt the random walk (RW) paradigm as our primary
mathematical and computational framework. A RW is a
sequence of random steps taken by a particle (an ion in our
case) in real space or by a signal (such as the LFP or the
EEG) in a mathematical space (Codling et al., 2008). De-
spite its randomness, this process adheres to certain prob-
abilistic rules. Biased random walks (BRWs), in contrast,
exhibitsdirectionality, showingapreference formovement
in specific ways. It is within this triune nature of the brain
—random, organized, and a blend of both— that its com-
putational and cognitive powers may lie.

Finally, we address the necessity for generalization in
our theoretical neuroscience approach. A generalized the-
oretical neuroscience seeks concepts applicable not only
to a particular brain or nervous system (e.g., of a mam-
malian animal like a rodent or primate), but also to in-
vertebrate brains, diminutive insects (where probabilis-
tic models may be more suitable), neuromorphic artifi-
cial intelligence systems, and still unexplored or unknown
neural-like systems. Social insects and their BRWs during
foraging can also be models of “liquid brains” (Solé et al.,
2019). Ant foraging behavior may provide insights into
RW and collective BRWs (cBRWs) mechanisms that are
challenging to investigate in more conventional brains.

Embracing this “universalist” view (see definition in
Brugger, 1981), it is important to develop (i) general def-
initions akin to those utilized in biology (Bunge, 1979)
and (ii) highly abstract models that dissect elementary
mechanisms of action, such as those present in conver-
gent and divergent networks or in nonlinear and simple
logical operations with minimal or no dynamics (see for
instance, Gutierrez et al., 2021).

With the concept of BRW, extended to several di-
mensions and scales —from ions to animal behavior—
we want to modestly contribute to the intuitively trans-
parent definitions that form the abstract foundation of
theoretical neuroscience.

2. A Personal Proposal
Our proposal is founded on five elements: 1. Probabil-
ity (encompassing the Probability of being in a state b
and Probability of localization at x, Ps(b) and Pl(x)), 2.
electrophysiological intricacy, 3. triune character, 4. bi-
ased random walks (BRW) and a fifth, more subjective el-
ement: delicacy. The last honors the brain-mind relation-
ship. This respect for the brain’s delicate circuits is woven
throughout the proposal (Gomez-Molina et al., 2013).

BRWs are posited as a fundamental characteristic
that manifest not only in the brain’s physical space, but
also within more abstract spaces, such as the space state
or the space of activation variables (e.g. membrane volt-
ages or EEG-potentials). In virtue of these BRWs, elec-
tric charges and signals unpredictably transcend their
borders and circuits interconnect in unnumerable ways,
often exhibiting a certain bias or directional tendency.

We contend that the brain’s electrophysiological com-
plexity arises from a unique combination of stochastic
behaviors and directional tendencies. This complexity is
further enriched by the dynamic interplay between acti-
vation and inactivation processes, as well as the integra-
tion of traditional and non-traditional categories, what
we refer to as the ‘triune approach’ to various concepts.

But why are BRWs apt for this role? Primarily be-
cause our brains are engineered to process movement,
with locomotion being one of the most fundamental move-
ments. The brain and body’s bilateral architecture likely
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stems from the need to compute straightforward loco-
motion, reflecting a biased or asymmetric pattern. This
bilateral symmetry, with left and right organs, sensors
and muscles arrayed around locomotion, suggests that
symmetries and asymmetries have been influential in our
evolutionary history (Corballis, 2017).

Thus, we possess abundant neural resources capable
of comprehending, encoding, and orchestrating BRWs.
With this foundation, we can anticipate to the brain’s
behavioral nucleus but also an engagement of computa-
tional resources within ourselves that are apt for this
interpretation.

3. Sketch of the Paper, its Methods, and
Algorithms

In section 4, we classify probabilistic and RW approaches
into three categories and define probabilities of activa-
tion and localization. Section 5 present computational
examples of BRWs for one and two dimensions and il-
lustrate how a collective of three signals in BRWs can
give rise to a simple electrophysiological signal. The
potential to scaling up to a greater number of signals
or particles in real brains is discussed in section 6. Fi-
nally, we recognize the need to have classic, semiclassic
and non-classic approaches to understand the full elec-
trophysiological intricacy of the real brain.

We use theoretical methods. Computational meth-
ods are only illustrative. The general algorithm we use
can be called the recursive uniform distribution method
and it is inspired by Fisher information. It can be
schematically presented in Figure 1.

The recursive uniform distribution method evaluates
how random walk behaviors are influenced by parame-
ters that are themselves randomly determined. It mir-
rors Fisher information’s focus on parameter sensitivity
and the quantification of information, extending these
concepts to a dynamic model where parameter uncer-
tainty is inherent.

In Fisher information, the intricacies arise from the
need to understand how small changes in parameters
affect the likelihood function (Dayan & Abbot, 2005;
Doya et al., 2007). In our recursive model, complexities
arise from the need to understand how the distribution
of the parameters (a and b), which are themselves ran-
dom variables, affect the behavior of the BRW.

Our goal here is to illustrate different types of BRWs
in a way that students in a course of Theoretical Neu-
roscience can understand intuitively. Computer simula-
tions, when used, are mainly for illustrative purposes.
They are written in Python 3.11.5.

If a future goal is to derive exact properties or to
prove certain behaviors of the model, then a more nu-
anced theoretical approach would be necessary. Extend-
ing the rigorous analysis found in Fisher information
studies to random parameters can be one way to do it.

4. Theoretical Results: Probabilities
4.1 States and a Triune Classification Framework for them
A triune approach to probabilities based on a state clas-
sification for the whole brain, cortical modules, neurons,
and ion channels has been proposed before (Gomez &
Lopera, 1999; Gomez-M, 2000). A threefold method
aims to reconcile strongly polarized or dichotomic views.

The more general thing we can say about an entity is
that it presents states. Even information systems that
are harder to describe or imagine, like those in psychol-
ogy or cybernetics can be approached with this notion.

In a multi-scale approach, states can be defined in
terms of electrophysiological activation (Andreassi, 2007;
Duffi, 1972) or indicators of neural activity, like those
associated with depolarizing currents, spiking, calcium
levels (Denizot et. al., 2019; Gomez-M., 2000; Koch,
1999; Malmivuo & Plonsey, 1995). EEG high frequency
activity or other forms proposed in EEG-source localiza-
tion also involve the notion of electrophysiological acti-
vation (Malmivuo & Plonsey, 1995).

Activation states can be continuous or discrete. For
a continuous description of states in terms of order rela-
tions, functions and space states see Bunge (1979).

For a discrete classification of states, the minimal
number of states we can study is two (e.g. ON and
OFF). However, we use here a previous classification
based on three states (including one intermediate state)
to avoid radical dichotomies (Gomez & Lopera, 1999;
Gomez-M, 2000).

The 3 states classes are:
Activation. A state of high electrophysiological activ-
ity associated with excitation, depolarization, high cal-
cium levels, local EEG activity of high frequencies or
alert state.
Semiactivation. A state of middle level electrophys-
iological activity associated with resting membrane po-
tentials (including values close to spike threshold), alpha
EEG activity or relaxed global state. Due to its mixed
properties, between sleep and activation, this state may
possess the most surprising computational abilities (Go-
mez-Molina, 2022).
Inactivation. A state of minimal or reduced electro-
physiological activity associated to inhibition, hyperpo-
larization, EEG activity at low frequencies and the deep
sleep state of the whole brain.

This definition bears resemblance to, but is distinct
from, the one employed in neuroimaging by Lin et al.
(2022). In their framework, only two states are delin-
eated, and an event is classified as activated (or deacti-
vated) upon the execution of a cognitive function (Lin
et al., 2022). However, it is important to note that while
the latter condition may be met in certain instances, our
criteria for activation do not exclusively hinge on the ex-
ecution of a cognitive function. These states can be de-
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Figure 1

The Recursive Uniform Distribution Method: an Intuitive Form to Understand BRWs and the Complexities of
the Electrophysiological Signals in the Brain

Note. Changes in probability distributions, probability functions, probability densities, and waves of proba-
bility, and how they create collective Bias Random Walks (cBRWs) in real or mathematical spaces, form the
basis of storing (memory) and processing (thinking, intelligence) information in the brain.

fined for ion channels, neurons, brain regions, and the
whole brain itself (Gomez & Lopera, 1999; Gomez-M,
2000; Gomez-Molina, 2003; Gomez-Molina et al., 2015).

4.2 Probability of state b Ps(b) and Probability of
localization at x P l(x)

A system —such as a neuron or a cortical module—
has a certain probability of being in a specific state b,
Ps(b), if its activation signal, like membrane potential or
local field potential, satisfies the criteria for that state b
(for instance, exceeding a threshold for spiking or being
within a high frequency range when active). Similarly,
a particle has a probability to occupy, or be found in, a
particular region x, known as Pl(x).

Pl(x) for particles moving in BRW in real space are
equivalent to Ps(b) for signals changing in BRW in state
space. Neurons compute in cBRW in state space simi-
larly to how ants (using swarm intelligence) or ions move
in cBRW in real space. This parallel allows us to extend
the classification of activation to probabilities in general.

4.3 Extending the Triune Classification Framework
for Probability and RWs

Like the classification we presented above for states, we
propose here a triune classification framework for prob-
abilistic approaches and RWs, consisting of three main
classes. Two of these classes are dichotomous, exhibit-
ing opposite characteristics, while the third class serves
as an intermediate category, embodying features from
both dichotomous classes. Each main class may contain

sub-classes, and there is a possibility for overlap between
classes and sub-classes.

Classic Class. In this category we include the
empirical probability (also called the relative frequency
probability, the long-run probability or the “objective
or frequentist probability”). It is defined as a ratio
P = P A

AP 0 , where PA represents all the cases associated
with a particular outcome, and AP0 represents all possi-
ble cases. This probability is in the range between zero
and one, including these extreme values. It can be con-
tinuous or discrete (Doya et. al., 2007; Jaynes, 2003).

Classic Random Walks involve Gaussian distributions
and conventional diffusion processes. They can be an-
alyzed in one, two, or three spatial dimensions. The
behavior is characterized by a mean squared displace-
ment that is proportional to time. BRWs that behave
without the bias according to a gaussian distribution,
can belong to this class.

In the semiclassic class, probabilities such as Bayes-
ian (interpreted as a degree of belief) or subjective prob-
abilities are included. These probabilities are updated
as new evidence is acquired. Ps(b) for b=semiactivation
might belong to this class.

Semiclassic Random Walks are associated with non-
gaussian distributions but still retaining some properties
of the classical class. Levy-flights (Codling, 2008) will
be classic in the sense that they retain some classic prop-
erties but because they are non-gaussian they belong to
this class.
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Non-classic class. Non-classic probabilities are
those that indicate a clear distinction with classical prop-
erties. For instance, if we emphasize some physical propen-
sity or tendency over long-run behavior, we are in the
framework of propensity theory. Probabilities calculated
using the Schrodinger equation (Abers, 2004) are other
sub-class of this class. Exotic probabilities (with a range
outside 0 or 1 (Yousef, 2001), or those linked with fuzzy
mathematics (Gomez-Molina, 2003) can also belong to
different sub-classes of this class.

Non-classic random walks can include self-avoiding
walks (Madras & Slade, 1996), random walk that never
crosses itself (Lawler, 1996), and quantum walks (Kempe,
2009).

4.4 A Minimalist Scenario
To give a minimalist example, let’s imagine a 1D en-
cephalon of length L with sensors located at x = 0 and
x = L. We can divide it in N segments and assume ini-
tially that the source has equal location probability to
be in any of them. We can assume that the source emits
two walkers (signals like ionic currents or magnetic fields,
or particles) that attenuate with the distance to the sen-
sor. Each one has, however, a probability to go the
right or to the left (to account for source orientation and
anisotropy) and to leave with certain magnitude in each
direction (to account for medium parameters, like con-
ductivity and permittivity). The problem is: for a given
recording of these signals for the sensors, what is the lo-
cation probability of the source or the sources? What is
the probability of activation that each position has?

To go deeper into this problem, we need to study
RW and BRWs in these simplified scenarios.

5. Computational Results: RWs and
BRWs in Electrophysiology

Locomotion is one of the most fundamental behaviors
the brain controls. The trajectory the animals describe
in space form a sequence of steps or paths with some
bias (a goal) but also with randomness (exploratory
turnings). This trajectory is called biased random walk
(BRW) and it can be described in some physical and/or
state space.

When we deal with physical spaces in the brain, the
walking entity can be an ion like calcium (Denizot et.
al., 2019; Malmivuo & Plonsey, 1995), a small molecule
(Nicholson, 2005; Postnikov et al., 2022) or an axonal
extension (Staai, 2023). The walking entity can also be
an electric signal fluctuating within the state-space of
its values. In this case we have a BRW in a mathemat-
ical space. When we talk about organisms or animals,
in neuroethology for example, the walking entity is the
animal itself. The way an ant or animal searches for
food can be modeled as a random walk or a BRW in
real space (Codling et al., 2008). Part of our efforts in

this paper is present a general, “universalist” (Brugger,
1981) approach for all these situations.

5.1 Random Walks in one Dimension (1D)
For xi, representing the electrical signal of a cell or an
average signal of a group of cells- three distinct tenden-
cies emerge:
• Upward Tendency (UP): signifies activation or excitation.
• Downward Tendency (DOWN): represents inactivation
or inhibition.
• Stabilizing Tendency (stay): The signal tends to hover
near its preceding value, xi−1, fluctuating slightly up-
wards or downwards, or remaining at xi−1 itself, indica-
tive of a resting state.

Each tendency is going to have a probability, P (UP ),
P (DOWN), P (stay) such that they satisfy:

P (UP )+P (DOWN)+P (stay) = 1

To have a better intuition, we are going to use only
a uniform distribution Z over the interval (a,b). In
this distribution, all the corresponding z values have
the same probability. If we want to generate 3 mutu-
ally exclusive outcomes from this uniform distribution,
we need to subdivide it in 3 different subintervals (a,c),
(c,d) and (d,b). We make the length of the subinterval
proportional to the probability we want to have for each
one of these 3 outcomes or events. For instance, if we
want that P (UP ) = P (DOWN) = P (stay) all the subin-
tervals are going to be the same length but if P (UP ) >
P (DOWN) > P (stay) then c − a > d − c > b − d. We
can have more than three mutually exclusive behaviors,
like “going UP SLOWLY”, or “going DOWN FASTLY”.
Compound behaviors can also be defined, like “going UP
fast, then stay and, finally, going DOWN Fastly”. In this
way we can simulate, for instance, a burst of spikes.

The advantages of uniform distributions in any of
these cases are multiple. According to the principle of
indifference, when we do not have any reasons to give
credence to one alternative over other, the best option
is giving the same (Jaynes, 2003). They can be handled
easier by intuition, and therefore we can estimate more
clearly subjective probabilities. There are mathematical
advantages too. For instance, for the three behaviors
mentioned above, the expectancy of the UP tendency is:

E(UP ) = E(Z) = a+ c

2

and its variance is:

V ar(UP ) = V ar(Z) = (c−a)2

12
The probability for Z to be in any subinterval of

(a,b) is proportional to the length of the subinterval:

P (a < Z < c) = c−a

b−a
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Where the constant of proportionality is simply 1
b−a .

This method can have applications in several scenar-
ios. For instance, to model the random walk of a small
molecule in the brain or the behavior of an animal forest-
ing for food in the wild. If the random walk is com-
pletely random and without any directional preference
(unbiased random walk), then the subintervals are all
equal and the next step is to determine the distance of
the next position of the walking entity. We can assume
that the distance is constant (as it is usually the case)
or generated for other random distribution. However, if
the walker is in some kind of field that makes it goes
preferentially to the left (or to the right) —or to stay
around— then the subintervals should have a length pro-
portional to this field or preference. It can even be more
realistic to make the distance longer in the preferred di-
rection, to simulate the effect of other walkers that also
go in that direction. Obstacles can also be simulated as
fields (Codling et al., 2008; Gomez-Molina et al., 2017).

We can see an example of the electrical signals in the
membrane of two neurons with different ongoing activity
but having a strong common input that dominate the ten-
dency of the signal. To illustrate our proposal, a simple
uniform distribution is enough. However, see Figure 2,
we have generated the distribution parameters with other
uniform probability distribution, as indicated before. In
circles we represent the “decision points about the next
turning direction”. They coincide in time for both cells be-
cause the common input arrives to them simultaneously.

For the minimalist 1D scenario of section 4.4, the
configuration of a sensor (natural or artificial) with a
threshold of 10 units (and m signals) illustrates how
intricate and delicate electrophysiological propagation
processes can be when described as cBRWs, even in sim-
plified models. In Figure 2, the sensor responds to the
blue signal (m = 1) when it crosses the threshold upward
at around 60-time units and until it crosses downward
at around 80-time units.

A second potential application is for modeling single
ion channel behavior (Johnston & Wu, 1995) or UP and
DOWN states in neurons (Wilson, 2008). In the first
case, the mean open time or the mean closed time can
be introduced to estimate P (UP ) and P (DOWN).

The length of the subintervals can be adjusted based
on the distance source-sensor. The source might exhibit
repulsive or attractive forces, move and/or switch polar-
ity once reached by the walker. Such a model allows for
the assessment of the electrophysiological intricacy of
real dipoles, sources, sinks and oscillatory signals in one
dimension. While a minimalist uniform distribution is
a significant oversimplification, it serves as a useful tool
for fostering intuition in students about cBRWs. This
approach’s primary advantage lies in its simplicity.

In Figure 3 we have three BRWs, simulated like in
Figure 2. They represent a simple case of collective

BRW, or cBRW, generating an electrophysiological sig-
nal, in red. This is calculated as a single point source in
an unbounded isotropic conductor (Buzsaki et al. 2012;
Malmivuo & Plonsey, 1995).

5.2 Probability Distributions and Random Walk in
two Dimensions (2D)

In this kind of random walk the walker can present the
following motions: Vertical (UP, DOWN, STAY) and
Horizontal (LEFT, RIGHT, STAY). We can apply to
the Horizontal motion the same considerations we ap-
plied to the vertical motion in the previous section. In
Figure 4 we show all the possible positions that two
particles have occupied during 100 time units. Time
evolution is not shown but some idea of the possible tra-
jectories can be estimated. The density of circles can
be used to calculate the total probability of location in
these 100 steps.

An example for 14 particles, discriminated by color
and symbol, is shown in Figure 5. Each particle starts in
a different position and have a particular bias. The fig-
ure tries to give us an intuition of what can be a cBRWs
with many walkers, with the hope that they can help to
build a picture of how intricate the movement and prob-
ability of localization of electrical charges in the brain
and its associated electrophysiological processes are.

As a good approximation, the movement of ions in
the brain obeys the basic equations proposed in the
Hodkin-Huxley model (Johnston & Wu, 1995; Malmivuo
& Plonsey, 1995). However, part of these movements
is random, and these ions also behave probabilistically.
Classical, semiclassical, and non-classical approaches to
probability and BRWs each provide essential insights
that are, in some ways, complementary.

6. Discussion
In this paper we have illustrated with theoretical models
and simulations the probabilistic nature of brain electro-
physiology using the tools of BRWs at essentially two dif-
ferent scenarios: the analysis of electrical signals within
a state space (Figure 2 and 3) and the examination of ac-
tual electric brain charges (ions) in physical space (Fig-
ure 4 and 5). We explore the utilization of uniform dis-
tribution as the fundamental model to generate BRWs.
This approach is rooted in the desire to comprehend in-
tricate electrophysiological systems using minimalistic
assumptions, akin to the way Fisher information encap-
sulates the essence of a variable’s informativeness with
respect to a parameter.

In the methods section, we propose a recursive appli-
cation of the uniform distribution, where the parameters
of one uniform distribution are determined by another,
creating a layered structure that enriches the behavior
of the BRW.

int.j.psychol.res | doi: 10.21500/20112084.7397 105

https://revistas.usb.edu.co/index.php/IJPR/index


Brains: Probabilistic, Electrophysiological Intricate, and Triune

Figure 2

Trajectories (100 steps) for two Particles in a Coherent Random Walk Sharing the same Qualitative Event
(showed in blue and red circles for clarity: UP, DOWN and STAY events, according to the recursive uniform
distribution method), but Responding to them with Different Magnitudes

Note. This effect can be observed at high resolution but disappears at low resolution. These simulation tools
can be used as a method of analysis of evoked responses at two sensory or field stimulation conditions, where
the parameters are unknown. Similarly, they can be used to simulate two homologous brain areas under similar
and synchronous inputs.

Figure 3

Three Electrical Signals Associated to Cell Membranes Describing a cBRW

Note. An electrophysiological signal (such as a local potential or EEG) is shown at the top (red, +), representing
the weighted sum of the signals below.
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Figure 4

Two simulations of two Particles (black and blue). They perform a Biased Random Walk in two Dimensions

Note. The positions of each particle are shown for all 100 steps. The final position after 100 steps is indicated
in green for the blue particle and in magenta for the black particle. Both particles start at the position (0,0).
The density of circles in a given area x indicates the probability of finding the particle in that location, Pl(x).

Figure 5

A Collective Biased-Random Walk (cBRW) Involving 14 Particles in a Two-dimensional Space, Defined by the
X and Y axes

Note. Despite utilizing shared algorithms, the presence of local heterogeneity —represented by specific random
values drawn from uniform distributions— can result in a diverse array of position sequences, density patterns,
and location probability values across different regions and time intervals. Some measures of central tendency
and parametric statistics might not be appropriate for real cBRW, where ephaptic effects and the delicate
nature of electrophysiological interactions make parameter estimation difficult.
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For example, by changing the parameters a and b
of a distribution, the associated subintervals (e.g., (a,c)
and (d,b); see section 5.1) can be modified as well as the
associated state probabilities. In this way, the discrete
distribution can switch itself probabilistically between
uniform, gaussian, bimodal, monotonically increasing
and monotonically decreasing distributions. This method
preserves the intuitive clarity of the uniform distribu-
tion, which is often obscured in more complex distribu-
tions. By doing so, this work demonstrates that even
the simplest of distributions can be harnessed to model
rich and varied behaviors.

6.1 BRWs between Sources and Sinks in Real Brains
In the extracellular or intracellular space, as well as in the
walls of ion channel pores, ions moving under fields en-
counter various small and large macromolecules, such as
water, metabolites, and proteins, in addition to cellular
structures like cell membranes, vesicles, and cytoskele-
tal proteins. While the mesoscopic trajectories of ions
generally exhibit a certain tendency or bias, they cannot
be fully described in a smooth (classical) manner using
Maxwell’s equations at the molecular level. This is be-
cause we cannot have a detailed description of the exact
locations of all the molecules in the brain. In this com-
plex organ we cannot possibly know all the molecular and
cellular details (Nunes & Srinivasan, 2006). The hetero-
geneity of the brain can only be approached statistically
(probabilistically). Therefore, the trajectories of ions, in-
stead of being smooth, break with each collision forming
a sequence of positions that can be described as a BRW.
See Figure 6 for the case of one source and sink.

The number of electrophysiological biased random
walks (BRWs) occurring throughout the entire brain is
staggeringly large, potentially surpassing 1017 per sec-
ond. This calculation considers that each ion moving
through an ion channel generates a distinct single-ion-
BRW trajectory while the channel remains open. More-
over, a multitude of BRWs take place adjacent to the cell
membranes, rendering this estimate quite conservative.
Nonetheless, it is astonishing that long-range oscillatory
activity exhibits such macroscopic and coherent organi-
zation of circuit currents across the scalp, given the collec-
tive behavior of countless BRWs at the nanoscopic level.

6.2 Activation, Dipoles and RWs
The increase in depolarization and the associated inward
cation currents that characterize activation states sug-
gest that the total number of state-switching events of
the ion channels (channel opening and closing) per unit
of time is a characteristic of activated regions. It is
then expected that there are changes in the parameters
of the random walks of cations (Ca2+, Na+, K+ or
H+) during activation. This situation can be of interest
to new scanner techniques (Gomez-Molina, 2003, 2008;
Toi, 2022). In other words, the regions of the brain

where we have activation, can be characterized by an
abundance of BRW. A particularly significant particle
to describe activation at many levels is the ion calcium
(Gomez-Molina, 2022). Importantly, calcium signaling
is not only present on neurons but also in other cells
whose role has been largely ignored in activation pro-
cesses, like glia and astrocytes (Denizot et al., 2019).

During activation the ions move in Brownian mo-
tion but with the typical parameters of the multiple RW
that characterize activation. These parameters should
depend on the microanatomy of the brain region (Nunes
& Srinivasan, 2006). We suggest that by estimating the
parameters of a distribution of probability as if they
were, recursively, dependent on another distribution of
probability, we can simulate the dynamics of the drivers
of the BRWs (usually, differences of potential). In other
words, by focusing on the probability of the parameters
of a uniform probability distribution, rather than in the
probability itself associated with such distribution, we
can capture more discrete probability distributions for
the possible events (see section 5.1).

cBRW may presumably contain many sources and
sinks. More precisely, they may be thought of as a set of
microsources and microsinks (Nunes & Srinivasan, 2006)
but moving and rotating, like some early models of the
depolarization wave of the heart (Malmivuo & Plonsey,
1995). One action potential can be conveniently under-
stood as a traveling dipole (Rodriguez-Falces, 2015) or,
more simply, as a moving activation or probability waves
(Gomez-Molina et al., 2015).

If we have several axons running in parallel, and
they activate simultaneously, one possible way to study
this phenomenon is by using diffusion weighted imaging
(DWI) that could potentially detect water particles flow-
ing in the open channels of the axons (Gomez-M, 2000).
The collective activation of ion channels can, theoreti-
cally, modify the apparent diffusion of water and this
process can be detected with DWI.

An increase in dipole density can also be a char-
acteristic of activated regions (Michel, 2019; Nunes &
Srinivasan, 2006). The probability distribution of the
number, position, orientation, and magnitude of these
dipoles should differ from what characterize non-activated
regions. Many should be not far from the size of a
compartment of an apical pyramidal neuron in layers
II/III and V/VI. Biggest dipoles (equivalent dipoles)
have been proposed in EEG/MEG solutions (Malmivuo
& Plonsey, 1995; Michel & Brunet, 2019).

6.3 Transient Charge Unbalances and Conservation Laws
Long-range electric signals have probabilistic relation-
ships with the open and location probability of the chan-
nels (Gomez-Molina, 2003), but most likely they are not
simple or easy to reduce to a dipole model. In this
context, the acceptance of equivalent dipoles as EEG-
sources, for instance, has been a long debate in electro-
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Figure 6

A Schematic Illustration of Biased Random Walks (BRWs) between a Source (in red) and a Sink (in blue)
within a Heterogeneous Medium

Note. The biases (e.g. black arrows) and the red-blue transitions are irregular. The paths are depicted as
a series of segments, intentionally elongated, and deviating from the ideal smooth trajectory. A fascinating
aspect of the brain’s electrophysiological complexity is how the nanoscopic randomness of billions of sinks
and sources within such a diverse medium can lead to the relatively organized EEG/MEG patterns that we
measure on the scalp. The interrelation of these sinks, sources and BRWs in a coherent whole is what we call
cBRW.

physiology (Malmivuo & Plonsey, 1995). Point-current
sources in gray matter are a better approximation but
we still need to estimate Ps or Pl for ion channels.

Part of the electrophysiological intricacy we have
studied arises because ephaptic effects can introduce
a slight bias in various ions, including calcium. Addi-
tionally, physiological activations may induce a charge
imbalance in certain brain regions, leading to the forma-
tion of both dipolar and monopolar components (Riera
et al., 2013, 2012). Calcium ions are instrumental in
representing neural network activity within entire organ-
isms (Nietz et al., 2022). Developing methods to capture
natural behaviors using these techniques is crucial.

In BRW models, calcium ions can be conserved, main-
taining their quantity and presence. However, they may
also bind to other entities, leading to their phenomeno-
logical ‘annihilation’ or disappearance. Conversely, they
may dissociate from buffers or molecules, re-emerging as
if they were phenomenologically generated anew (Gomez-
Molina et al., 2017).

The conservation of mass is implicit when we study
multiple particles in a random walk (if these particles
do not react chemically with others). The conservation
of charge is fundamental in electrophysiology as well
as the principle of electroneutrality (Johnston & Wu,
1995) although the last has controversial issues (Riera

et al., 2013, 2012). Ion diffusion might introduce current
sources (Halnes et al., 2016, 2017). Again, all of this is
part of the electrophysiological intricacy of the brain.

The conservation of charge is the paradigm for all
conservation laws in electrodynamics, like the conser-
vation of energy, momentum, and angular momentum
in electrodynamics (Griffiths, 2014). This conservation
principle has been the model for more complex conserva-
tion phenomena in non-classic physics: the conservation
of probability and the flow of probability (probability
current) (Abers, 2004). This perspective gives some real
presence to the notion of probability since the flow of
probability is analogous to the flow of an electric current
or a fluid (Griffiths, 2014). It is well established that a
single photon can evoke an electrical response in a rod
(Gentili, 2021). It is possible that other neural processes,
neural prostheses, or electromagnetic brain-computer in-
terfaces such as EEG/MEG, electric/magnetic stimula-
tion, MRI, or near-infrared spectroscopy (NIRS) might
detect or exploit the non-classical probabilities of cBRWs
in significant ways. The computational abilities of the
mind, future computers (Aaronson, 2013) or brain-com-
puter hybrids can be due to the non-classic nature of
Ps(semiactivation). Particles, including membrane cur-
rents or ion channels, at this state might be “cloudy”
so Ps(b)×Pl(x)×driving forces (Gomez-Molina, 2003)
might represent powerful non-classical and fuzzy com-
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putations of cBRWs.

7. Conclusions
In this study, we endeavor to demonstrate how triune
methodologies —classical, semi-classical, and non-classical—
for probability and BRWs, alongside activation, semi-
activation, and inactivation for activation states, each
uniquely contribute to elucidating the complex electro-
physiological phenomena observed in the brain. While
the term ‘classical’ varies across disciplines, within math-
ematics, it denotes an approach grounded in logic and
set theory, devoid of paradoxes, as characterized by Shapiro
(Shapiro, 2005). In our proposed classification, the ad-
herence to binary concepts, the law of excluded middle,
and the law of non-contradiction distinguish classical
mathematics.

7.1 Electric Charge: A Minimalist Concept in Elec-
trophysiology

The earliest, simplest, and more fundamental concept of
electrophysiology has been the concept of electric charge.
Therefore, can we attempt to describe the brain’s elec-
trophysiological complexity solely in these terms?

References
Aaronson, S. (2013). Why philosophers should care about

computational complexity. In B. Copeland, C.
Posy, & O. Shagrir (Eds.), Computability: Godel,
turing, church, and beyond. MIT Press.

Abers, E. (2004). Quantum mechanics. Pearson Educa-
tion, Addison Wesley, Prentice Hall Inc.

Aitchison, L., & Lengyel, M. (2017). With or without
you: Predictive coding and bayesian inference
in the brain. Current Opinion in Neurobiology,
46, 219–227. https://doi.org/10.1016/j.conb.
2017.08.010

Anastassiou, C. A., & Koch, C. (2014). Ephaptic cou-
pling to endogenous electric field activity: Why
bother? Current Opinion in Neurobiology, 31,
95–103. https://doi.org/10.1016/j.conb.2014.
09.002

Andreassi, J. L. (2007). Psychophysiology (5th ed.). Tay-
lor & Francis Group.

Brugger, W. (1981). Philosophisches wörterbuch. Verlag
Herder Freiburg/Br.

Bunge, M. (1979). Treatise on basic philosophy (Vol. 4).
Reidel Publishing Company.

Buzsaki, G., Anastassiou, C. A., & Koch, C. (2012). The
origin of extracellular fields and currents-EEG,
ECoG, LFP and spikes. Nature Reviews Neuro-
science, 13, 407–420.

Codling, E. A., Plank, M. J., & Benhamou, S. (2008).
Random walk models in biology. Journal of the
Royal Society Interface, 5, 813–834.

Corballis, M. C. (2017). The evolution of lateralized
brain circuits. Frontiers in Psychology, 8, 1021.
https://doi.org/10.3389/fpsyg.2017.01021

Dayan, P., & Abbott, L. F. (2005). Theoretical neuro-
science: Computational and mathematical mod-
eling of neural systems. MIT Press.

Denizot, A., Arizono, M., Nägerl, U. V., Soula, H., &
Berry, H. (2019). Simulation of calcium signal-
ing in fine astrocytic processes: Effect of spatial
properties on spontaneous activity. PLoS Com-
putational Biology, 15, e1006795.

Doya, K., Ishii, S., Pouget, A., & Rao, R. P. N. (2007).
Bayesian brain: Probabilistic approaches to neu-
ral coding. MIT Press.

Duffi, E. (1972). Activation and behavior. Wiley.
Friston, K. (2010). The free-energy principle: A unified

brain theory? Nature Reviews Neuroscience, 11
(2), 127–138. https://doi.org/10.1038/nrn2787

Gentili, P. L. (2021). Establishing a new link between
fuzzy logic, neuroscience, and quantum mechan-
ics through bayesian probability: Perspectives
in artificial intelligence and unconventional com-
puting. Molecules, 26 (19), 5987. https : //doi .
org/10.3390/molecules26195987

Giere, R. N. (1973). Objective single case probabilities
and the foundations of statistics. Studies in Log-
ic and the Foundations of Mathematics, 73, 467–
483. https://doi.org/10.1016/S0049-237X(09)
70380-5

Gomez, J. F., & Lopera, F. J. (1999). A topological hy-
pothesis for the functional connections of the cor-
tex: a principle of the cortical graphs based on
neuroimaging. Medical Hypotheses, 53 (3), 263–
266.

Gómez Molina, J. F., Gómez Molina, Á., & Restrepo,
A. A. (2013). Explorando circuitos cerebrales sin
perturbarlos: neuroingeniería no invasiva. Uni-
Pluriversidad, 12 (3), 29–35. https://doi.org/10.
17533/udea.unipluri.15351

Gomez-M, J. F. (2000). Ionic current and metabolism
for brain scanners (a three state-model of mod-
ular activation). Neural Networks, 13 (6), 689–
690. https://doi.org/10.1016/S0893-6080(00)
00033-2

Gomez-Molina, J. F. (2003). Ionic channels and long-
range electrical signals: A probabilistic interac-
tion. Medical Hypotheses, 60 (4), 463–467. https:
//doi.org/10.1016/S0306-9877(02)00299-2

Gomez-Molina, J. F. (2008). Aprobabilistic-Bayesianap-
proach to epileptiform events: Combination of
visual stimulation and EEG with fMRI/“Ionic-
CurrentMRI”. In M. Ding & D. Glanzman (Eds.),
Proceedings of Dynamical Neuroscience XVI, A
Satellite Symposium Immediately Preceding the
38th Annual Meeting of the Society for Neuro-

int.j.psychol.res | doi: 10.21500/20112084.7397 110

https://doi.org/10.1016/j.conb.2017.08.010
https://doi.org/10.1016/j.conb.2017.08.010
https://doi.org/10.1016/j.conb.2014.09.002
https://doi.org/10.1016/j.conb.2014.09.002
https://doi.org/10.3389/fpsyg.2017.01021
https://doi.org/10.1038/nrn2787
https://doi.org/10.3390/molecules26195987
https://doi.org/10.3390/molecules26195987
https://doi.org/10.1016/S0049-237X(09)70380-5
https://doi.org/10.1016/S0049-237X(09)70380-5
https://doi.org/10.17533/udea.unipluri.15351
https://doi.org/10.17533/udea.unipluri.15351
https://doi.org/10.1016/S0893-6080(00)00033-2
https://doi.org/10.1016/S0893-6080(00)00033-2
https://doi.org/10.1016/S0306-9877(02)00299-2
https://doi.org/10.1016/S0306-9877(02)00299-2
https://revistas.usb.edu.co/index.php/IJPR/index


Brains: Probabilistic, Electrophysiological Intricate, and Triune

science (p. 27). Washington, DC, JW Marriott
Hotel.

Gomez-Molina, J. F. (2022). Study using Python/Excel
and chronobiosymmetry of exotic states between
sleep and activation: Sleep spindles, alpha activ-
ity and dendritic Ca2+ in aging and Alzheimer’s
disease. Program No. 088.02. 2022 Neuroscience
Meeting Planner. Society for Neuroscience.

Gomez-Molina, J. F., Corredor, M., Restrepo-Velasquez,
A. A., & Ricoy, U. M. (2017). Computer mod-
els for ions under electric and magnetic fields:
Random walks and relocation of calcium in den-
drites depends on timing and population type.
In I. Torres, J. Bustamante, & D. Sierra (Eds.),
VII Latin American Congress on Biomedical En-
gineering CLAIB 2016, Bucaramanga, Santan-
der, Colombia, October 26th-28th, 2016. IFMBE
Proceedings. Springer, Singapore. https://doi .
org/10.1007/978-981-10-4086-3_175

Gomez-Molina, J. F., Corredor, M., Restrepo-Velazquez,
A. A., & Botero-Posada, L. F. (2015). Field gen-
erated by waves, sequential activations and ap-
parent motion: Effects and typical patterns. Re-
vista Ingeniería Biomédica, 7 (17), 13–20

Griffiths, D. J. (2014). Introduction to electrodynamics
(4th ed.). Pearson Education Limited.

Gutierrez, G. J., Rieke, F., & Shea-Brown, E. T. (2021).
Nonlinear convergence boosts information cod-
ing in circuits with parallel outputs. Proceedings
of the National Academy of Sciences, 118 (8),
e1921882118. https ://doi .org/10.1073/pnas .
1921882118

Halnes, G., Mäki-Marttunen, T., Keller, D., Pettersen,
K., Andreassen, O. A., & Einevoll, G. T. (2016).
Effect of ionic diffusion on extracellular poten-
tials in neural tissue. PLoS Computational Bi-
ology, 12 (11), e1005193. https : //doi . org/10 .
1371/journal.pcbi.1005193

Halnes, G., Mäki-Marttunen, T., Pettersen, K. H., An-
dreassen, O. A., & Einevoll, G. T. (2017). Ion
diffusion may introduce spurious current sources
in current-source density (CSD) analysis. Jour-
nal of Neurophysiology, 118, 114–120. https://
doi.org/10.1152/jn.00976.2016

Hille, B. (2001). Ion channels of excitable membranes
(3rd ed.). Sinauer Associates.

Jaynes, E. T. (2003). Probability theory: The logic of
science. Cambridge University Press.

Johnston, D., & Wu, S. M.-S. (1995). Foundations of
cellular neurophysiology. MIT Press.

Kempe, J. (2009). Quantum random walks: an introduc-
toryoverview. Contemporary Physics, 50 (1), 339–
359. https://doi.org/10.1080/00107510902734722

Kerre, E. E., & Mordeson, J. N. (2005). A historical
overview of fuzzy mathematics. New Mathemat-

ics and Natural Computation, 1 (1), 1–26. https:
//doi.org/10.1142/S179300570500011X

Knill, D. C., & Pouget, A. (2004). The Bayesian brain:
The role of uncertainty in neural coding and
computation. Trends in Neurosciences, 27 (12),
712–719. https://doi.org/10.1016/j.tins.2004.
10.007

Koch, C. (1999). Biophysics of computation. Oxford Uni-
versity Press.

Lawler, G. (1996). Intersection of random walks. Birkhä-
user Boston. https://doi.org/10.1007/978-1-
4612-4126-5

Lin, S., Xu, Z., Sheng, Y., Chen, L., & Chen, J. (2022).
AT-NeuroEAE: A joint extraction model of e-
vents with attributes for research sharing-orient-
ed neuroimaging provenance construction. Fron-
tiers in Neuroscience, 15, 739535. https://doi.
org/10.3389/fnins.2021.739535

Madras, N., & Slade, G. (1996). The self-avoiding walk.
Birkhäuser Boston. https://doi.org/10.1007/
978-1-4612-4126-5

Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism:
Principles and applications of bioelectric and
biomagnetic fields. Oxford University Press.

Michel, C. M., & Brunet, D. (2019). EEG source imag-
ing: A practical review of the analysis steps.
Frontiers in Neurology, 10, 325. https : / / doi .
org/10.3389/fneur.2019.00325

Nicholson, C. (2005). Factors governing diffusion of mo-
lecular signals in brain extracellular space. Jour-
nal of Neural Transmission, 112, 29–44. https:
//doi.org/10.1007/s00702-004-0204-1

Nietz, A. K., Popa, L. S., Streng, M. L., Carter, R. E.,
Kodandaramaiah, S. B., & Ebner, T. (2022).
Wide-field calcium imaging of neuronal network
dynamics in vivo. Biology (Basel), 11 (11), 1601.
https://doi.org/10.3390/biology11111601

Nunes, P., & Srinivasan, R. (2006). Electric fields of the
brain. Oxford University Press.

Postnikov, E. B., Lavrova, A. I., & Postnov, D. E. (2022).
Transport in the brain extracellular space: Dif-
fusion, but which kind? International Journal
of Molecular Sciences, 23 (12401). https://doi.
org/10.3390/ijms232012401

Riera, J., & Cabo, A. (2013). Reply to gratiy et al. Jour-
nal of Neurophysiology, 109, 1684–1685. https:
//doi.org/10.1152/jn.00014.2013

Riera, J. J., Ogawa, T., Goto, T., Sumiyoshi, A., Non-
aka, H., Evans, A., Miyakawa, H., & Kawashima,
R. (2012). Pitfalls in the dipolar model for the
neocortical EEG sources. Journal of Neurophys-
iology, 108, 956–975. https://doi.org/10.1152/
jn.00098.2011

Rodriguez-Falces, J. (2015). Understanding the electri-
cal behavior of the action potential in terms of
elementary electrical sources. Advances in Phys-

int.j.psychol.res | doi: 10.21500/20112084.7397 111

https://doi.org/10.1007/978-981-10-4086-3_175
https://doi.org/10.1007/978-981-10-4086-3_175
https://doi.org/10.1073/pnas.1921882118
https://doi.org/10.1073/pnas.1921882118
https://doi.org/10.1371/journal.pcbi.1005193
https://doi.org/10.1371/journal.pcbi.1005193
https://doi.org/10.1152/jn.00976.2016
https://doi.org/10.1152/jn.00976.2016
https://doi.org/10.1080/00107510902734722
https://doi.org/10.1142/S179300570500011X
https://doi.org/10.1142/S179300570500011X
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1007/978-1-4612-4126-5
https://doi.org/10.1007/978-1-4612-4126-5
https://doi.org/10.3389/fnins.2021.739535
https://doi.org/10.3389/fnins.2021.739535
https://doi.org/10.1007/978-1-4612-4126-5
https://doi.org/10.1007/978-1-4612-4126-5
https://doi.org/10.3389/fneur.2019.00325
https://doi.org/10.3389/fneur.2019.00325
https://doi.org/10.1007/s00702-004-0204-1
https://doi.org/10.1007/s00702-004-0204-1
https://doi.org/10.3390/biology11111601
https://doi.org/10.3390/ijms232012401
https://doi.org/10.3390/ijms232012401
https://doi.org/10.1152/jn.00014.2013
https://doi.org/10.1152/jn.00014.2013
https://doi.org/10.1152/jn.00098.2011
https://doi.org/10.1152/jn.00098.2011
https://revistas.usb.edu.co/index.php/IJPR/index


Brains: Probabilistic, Electrophysiological Intricate, and Triune

iology Education, 39, 15–26. https://doi.org/10.
1152/advan.00130.2014

Rossi, G. B., Crenna, F., & Berardengo, M. (2023). Prob-
ability theory as a logic for modeling the mea-
surement process. Acta IMEKO.

Shapiro, S. (Ed.). (2005). The oxford handbook of phi-
losophy of mathematics and logic. Oxford Uni-
versity Press.

Solé, R., Moses, M., & Forrest, S. (2019). Liquid brains,
solid brains. Philosophical Transactions of the
Royal Society B: Biological Sciences, 374 (1774),
20190040. https://doi.org/10.1098/rstb.2019.
0040

Staii, C. (2023). Biased random walk model of neuronal
dynamics on substrates with periodic geometri-
cal patterns. Biomimetics, 8 (267). https://doi.
org/10.3390/biomimetics8020267

Toi, P. T., Jang, H. J., Min, K., Kim, S. P., Lee, S. K.,
Lee, J., Kwag, J., & Park, J. Y. (2022). In vivo
direct imaging of neuronal activity at high tem-
porospatial resolution. Science, 378 (6616), 160–
168. https://doi.org/10.1126/science.abh4340

Wilson, C. (2008). Up and down states. Scholarpedia,
3 (6), 1410. https://doi.org/10.4249/scholarpedi
a.1410

Youssef, S. (2001). Physics with exotic probability theory.
arXiv. https://arxiv.org/abs/hep-th/0110253

int.j.psychol.res | doi: 10.21500/20112084.7397 112

https://doi.org/10.1152/advan.00130.2014
https://doi.org/10.1152/advan.00130.2014
https://doi.org/10.1098/rstb.2019.0040
https://doi.org/10.1098/rstb.2019.0040
https://doi.org/10.3390/biomimetics8020267
https://doi.org/10.3390/biomimetics8020267
https://doi.org/10.1126/science.abh4340
https://doi.org/10.4249/scholarpedia.1410
https://doi.org/10.4249/scholarpedia.1410
https://arxiv.org/abs/hep-th/0110253
https://revistas.usb.edu.co/index.php/IJPR/index

	Introduction
	A Personal Proposal
	Sketch of the Paper, its Methods, and Algorithms
	Theoretical Results: Probabilities
	States and a Triune Classification Framework for them
	Probability of state b Ps(b) and Probability of localization at x Pl(x)
	Extending the Triune Classification Framework for Probability and RWs
	A Minimalist Scenario

	Computational Results: RWs and BRWs in Electrophysiology
	Random Walks in one Dimension (1D)
	Probability Distributions and Random Walk in two Dimensions (2D)

	Discussion
	BRWs between Sources and Sinks in Real Brains
	Activation, Dipoles and RWs
	Transient Charge Unbalances and Conservation Laws

	Conclusions
	Electric Charge: A Minimalist Concept in Electrophysiology


