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Abstract.
Parkinson’s disease (PD) is a common neurodegenerative disorder
worldwide, with over 6.2 million registered cases. Gait analysis plays
a fundamental role in evaluating motor abnormalities associated with
this disease. However, current methods, such as marker-based systems,
are intrusive and expert-dependent. Markerless alternatives, like video
sequence analysis, have been proposed, but they tend to provide overall
classification scores and lack the ability to interpret joint kinematics in de-
tail. An innovative technique is presented using volumetric convolutional
networks that can learn intermediate postural patterns and distinguish
between Parkinson’s patients and control subjects. This approach
utilizes OpenPose activations and then applies hierarchical convolution to
minimize classification. In tests conducted with 14 Parkinson’s patients
and 16 control subjects, this method achieved a classification accuracy of
98%.
Resumen.
La enfermedad de Parkinson (EP) es un trastorno neurodegenerativo
común a nivel mundial, con más de 6.2 millones de casos registrados. El
análisis de la marcha desempeña un papel fundamental en la evaluación de
las anomalías motoras asociadas con esta enfermedad. Sin embargo, los
métodos actuales, como sistemas basados en marcadores, son intrusivos y
dependientes de expertos. Se han propuesto alternativas sin marcadores,
como el análisis de secuencias de video, que tienden a proporcionar
puntajes de clasificación globales y carecen de la capacidad de interpretar
la cinemática articular detalladamente. Se presenta una técnica inno-
vadora utilizando redes convolucionales volumétricas que pueden aprender
patrones posturales intermedios y distinguir entre pacientes con Parkinson
y sujetos control. Este enfoque utiliza activaciones de OpenPose, y luego
aplica una convolución jerárquica para minimizar la clasificación. En
pruebas realizadas con 14 pacientes Parkinson y 16 sujetos control, este
método alcanzó una precisión del 98% en clasificación.
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1. Introduction
Parkinson’s Disease (PD) is the second most common
neurodegenerative disorder, affecting more than 6.2 mil-
lion people worldwide (Dorsey et al., 2018, Feigin et al.,
2021). Moreover, there has been a significant increase
in prevalence over the last three decades, reaching up to
5 times people suffering PD (Tolosa et al., 2021). Cur-
rently, the diagnosis of PD is based on the observation
and analysis of progressive gait motor disorders, such
as rigidity, slowness of movement (bradykinesia), pos-
tural instability, among many other related symptoms
(Rovini et al., 2017).

Nowadays, standard support for gait analysis charac-
terization is based on marker-based systems, which cap-
ture dynamics of key joints by using invasive methodolo-
gies based on special markers placed on specific anatomi-
cal positions (Baker, 2006). This methodology is nonethe-
less invasive and alters the natural gesture of movements,
which for Parkinson disease can include limitations on
the normal development of locomotion. Besides, some of
these protocols are strongly dedicated to capture lower-
limb kinematics, losing important markers of PD, such
as postural instability and coordination.

In the literature, these limitations have been tackled
from video analysis alternatives that include markerless
setups, achieving remarkable results on the characteriza-
tion of Parkinson movements. Much of these strategies
are based on the training and modeling of video descrip-
tors to classify and differentiate Parkinson’s from other
motions (Lancet, 2017). A main limitation on these ap-
proaches is the poor adaptation in the clinical context,
offering alternatives that are difficult to implement in ob-
servational setups. In fact, much of the support of these
strategies are based on probability scores about malig-
nancy, but losing regional information of affected regions.
Hence, many of these strategies may biased for artifacts
in the sequences, losing relevance to characterize anatom-
ical and physiological during a locomotion process.

This work introduces a convolutional network that
learns spatio-temporal patterns from intermediate pos-
tural representations. The proposed approach is based
on markerless setups, avoiding additional artifacts to al-
ter the patient’s gestures. This work starts by adapting
an OpenPose architecture to return the bank of interme-
diate activations related to knowledge about joint fields
and probability joint maps. Later, this intermediate
representation is projected to a convolutional network,
which is there after minimized to discriminate between
control and parkinsonian patterns. The results evidence
sufficient support to characterize Parkinson from classi-
fication scores, but also the capability to explain results
from postural information.

2. Proposed Approach
This work introduces a computational strategy for char-
acterizing motor patterns associated with Parkinson’s
disease based on joint interest points calculated with-
out the use of markers. Inspired in OpenPose (Cao et
al., 2021), we generate the poses and identify key body
points from video sequences. Then a spatio-temporal
convolutional network is trained to discriminate these
key points, regarding if the patient is control or Parkin-
son. This network was trained and adjusted from in-
termediate pose representations: the Joint Confidence
Maps (JCM) and Part Affinity Fields (PAF) elements.
The general pipeline of the proposed approach is illus-
trated in Figure 1.

2.1 ADeepArchitecture forPoseEstimation(OpenPose)
A main contribution of this work is to use markerless
setups to avoid the limitation of marker-based configu-
rations. Hence, OpenPose (Cao et al., 2021) architec-
ture was used as a pose estimator from gait videos to
extract intermediate features. This network is widely
used in the literature for estimating key joint points dur-
ing movement and actions for one or several persons in
a scene. Formally, OpenPose architecture use an image
I ∈ Rw×h where a posture will be extracted (P ∈ NJ and
J ∈ {j1, j2, . . . , jn} represents the set of n body joints).
This network use only 18 articular points (|J | = 18), as
showed in the Figure 2a. These joint points allow sum-
marize the dynamics of a particular subject during lo-
comotion. Specifically, each input image I is processed
through convolutional layers Ψ(I) to obtain a set of deep
activations F , which are further processed through two
branches: Part Affinity Fields (L) and Joint Confidence
Maps (S). These maps and vector fields are processed
through bipartite matching resulting in the association
of body joints with articular locations giving us the skele-
ton shown in Figure 2a.

2.2 Part Affinity Fields
The Part Affinity Fields (PAFs) are sets of 2D vector
maps used to model spatial and anatomical relationships
between pairs of body joints. They are formally de-
scribed as a set L = {Li}C , where Li ∈ Rw×h×2, and C
is a hyperparameter determining the number of PAFs
to be found. Each pixel within the PAF contains a vec-
tor representing the direction and strength of the connec-
tion between the corresponding joint pair. The vector’s
direction indicates the orientation of the connection, and
the vector’s magnitude represents the confidence in that
connection, as illustrated in Figure 2b.
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Figure 1

Proposed Architecture for Generating OpenPose Activations, Featuring a 3D Convolutional Net-Work for Pa-
tient Classification Based on Gait

Figure 2

Operation of the Combination of PAF and JCM for the Generation of Poses through OpenPose

(a) Skeleton obtained using OpenPose (b) Graphical representation of an example PAF

Formally, OpenPose generates a set of PAF , repre-
sented as Lt=1 = ϕt=1(F ), where ϕt=1 refers to the con-
volutional layers used for PAF calculation at t = 1. For
each subsequent refinement stage, the predicted PAF
from the previous stage, the original features F , and a
set of joint confidence maps (St−1) are combined and
used to generate refined predictions:

Lt = ϕt(F,St−1,Lt−1), for t ≥ 2 (1)

This approach allows progressive refinement of the
PAF , contributing to the process of detecting and associ-
ating various body parts. In Figure 3, you can observe the
resulting activations of these fields, which are potential
intermediate representations of the locomotion process,
including predominant directions during locomotion.

2.3 Joint Confidence Maps
In a parallel branch of processing, another bank of con-
volutional filters serves as input to generate a probabilis-
tic representation of poses. Specifically, a Joint Confi-
dence Map (JCM) is a two-dimensional representation
that reflects the probability of a specific body part be-
ing located at a particular pixel. They are formally
described as a set S = {Sj}J , with Sj ∈ Rw×h, where
J ∈ {j1, j2, . . . , jn} is the number of body parts (joints).
Each pixel in Sj contains a value representing the proba-
bility that joint j is located at that position in the image.
In other words, the JCMs indicate how confident the
model is that a specific joint is located at each pixel of
the image.
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Figure 3

Visualization of all Part Affinity Fields (PAF and all Joint Confidence Maps (JCMs) Obtained during the
Gait of a Control Subject

Similar to the generation of PAFs, the network gen-
erates a set of JCMs, represented as St=1 = ρt=1(F ),
where ρt=1 refers to the convolutional module used for
map calculation at t = 1. At each subsequent refine-
ment stage, the JCMs and PAFs from the previous
stage, along with the features F , are combined to gen-
erate refined predictions (see Figure 3):

St = ρt(F,St−1,Lt−1), for t ≥ 2 (2)

2.4 3D Convolutional Network for Classifying Parkin-
sonian Patterns

Once the OpenPose architecture is fine-tuned with
videos of both control subjects and Parkinson’s patients,
intermediate representations can be obtained: the PAF
(L) and the Joint Confidence Maps (S). These intermedi-
ate representations are activations from OpenPose that
contain relevant information about kinematics during lo-
comotion (L) and joint importance in each frame (S).

In this work, we use these intermediate deep repre-
sentations (L and S) for characterizing spatio-temporal
motor patterns related to Parkinson’s disease. To achieve
this, a 3D convolutional network was designed and tuned,

allowing for the learning of deep relationships while con-
sidering the volumetric nature of the information. The
3D convolutional architecture specializes in extracting
spatiotemporal features from complete videos, capturing
long-term temporal patterns in sequential data. This is
crucial in the analysis of parkinsonian gait, as several
cardinal symptoms of Parkinson’s disease require pro-
longed observation throughout the gait cycle for accu-
rate identification. In fact, such volumetric representa-
tions with 3D convolutions have been proposed in the
literature for video analysis in various tasks, such as
action recognition (Varol et al., 2017). In this work,
the PAFs L were obtained for each frame In of gait
video during the last refinement stage (t = T ), i.e., L =
{LT (In)}N , where N corresponds to the total number
of video frames. Then, the set of PAFs for all frames,
denoted as L, was fed into the 3D convolutional ar-
chitecture. This architecture incorporates spatiotempo-
ral convolutions to identify different patterns that may
occur during a gait process, determining the probabil-
ity of whether these patterns correspond to a Parkin-
son’s patient or a control subject, as shown in Figure
1. Formally, the network’s operation can be expressed
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as P (Parkinsons|L) = 1 − P (Control|L) = Ψ(L), where
Ψ represents the set of kernels, layers, functions, and
operations that make up the model.

It is worth noting that the intermediate representa-
tion of the PAFs contains directional information about
the positioning of the joints. Therefore, through 3D con-
volutions, the architecture is expected to learn kinemat-
ics with greater discriminatory power between control
subjects and parkinsonian patterns. On the other hand,
from Joint Confidence Maps, it is expected to learn co-
herence between structural activations, which can also
be discriminative.

3. Experimental Setup
3.1 Database Description
The database used in this work consists of a series of
markerless RGB videos captured during a locomotion
exercise. In this study, 30 subjects were invited to par-
ticipate, including 16 control subjects and 14 who had
been diagnosed with Parkinson’s disease (PD). The PD
patients were in stages of the disease ranging from 1.0
to 4.0 on the Hoehn and Yahr scale. In total, 8 patients
were diagnosed with a score of less than or equal to 2.5,
and 6 patients scored between 2.5 and 4.0. Each sub-
ject in the study was recorded on eight occasions while
performing markerless natural walking, four times to the
left and four times to the right, resulting in a total of 240
video sequences. This dataset is balanced by age, with
an average age of 70.4±5.38 years for control patients
and 73±7.45 years for PD patients. All videos were
recorded indoors, with a static camera and a uniform
background color. The average duration of the videos is
2 seconds. All participants provided informed consent
and the research was approved by the ethics committee
of the Industrial University of Santander.

3.2 Proposed Method Setup
From each video, we selected N = 70 intermediate frames
(to cover approximately one gait cycle). Each video
record ensures a complete gait cycle that fully exposes
the kinematics during locomotion. The videos were re-
sized to a size of 95×95 pixels (w × h). Each frame
was individually passed to the OpenPose network for
pose estimation. The VGG19 net was used to compute
convolutional features (Simonyan and Zisserman, 2014).
These deep features were then used to generate PAFs
and JCMs, with the number of stages t set to 6.

The proposed convolutional architecture for classi-
fying parkinsonian patterns from PAF and JCM se-
quences was fine-tuned considering different convolution-
al and embedding levels. In this particular work, the fol-
lowing configurations were validated: 5 Conv3D 3 dense
layers, 5 Conv3D 1 dense layer, 3 Conv3D 3 dense layers,
and 3 Conv3D 1 dense layer. For our models, we used 10
training epochs, a learning rate of 1×10−4, an Adam op-

timizer, and a cross-entropy loss function. To evaluate
each of the configurations, a leave-one-patient-out cross-
validation scheme was followed, in which a model was
trained for each patient, with the other samples used for
model training. Additionally, classification metrics such
as accuracy, precision, sensitivity, F2-score, and the area
under the curve (AUC) were used for validation.

4. Evaluation and Results
To validate the capability of intermediate pose represen-
tations, we projected the PAF and JCM activations ex-
tracted from the OpenPose architecture. This block of
activations was fed into a volumetric convolutional archi-
tecture to learn discriminative representations between
Parkinson’s disease and a control population. Simultane-
ously, we assessed the convolutional representation that
yielded the best performance in the discrimination task,
determining the various 3D convolutional layers and as-
sociated embedded vectors. Figure 4 shows the results
obtained for the entire set of 22 patients, with accuracy
as the measurement basis for the classification process.

As observed in Figure 4, the intermediate PAF rep-
resentation yields consistent and robust results across
different configurations of the trained architecture. PAF
vector maps can influence the pose orientations, which
may serve as a characteristic pattern allowing the net-
work to discriminate between the two study populations.
On the other hand, the JCM representation exhibits a
limited performance in the architecture with 3 dense
layers. This could be attributed to the limited train-
ing data, particularly in the case of JCM maps, which
provide reduced information regarding attention maps
around the joints.

Figure 4

Comparison of Patient Classification Accuracy for
Control and Parkinson’s Disease using Different
Configurations, Using PAF vs JCM as Inputs

In a second experiment, we conducted a compari-
son with a state-of-the-art proposal that advo-cates vol-

int.j.psychol.res | doi: 10.21500/20112084.7405 88

https://revistas.usb.edu.co/index.php/IJPR/index


Volumetric Deep Architecture to Discriminate Parkinsonian Patterns from Intermediate Pose Representations

Table 1

Comparison of Classification Metrics for Control and Parkinson’s Patients between our Proposal and the State
of the Art

Method Accuracy Precision Sensitivity F2-Score AUC
Guayacán (RGB) .949 .910 1.0 .780 .950
Guayacán (OF ) .847 .870 .780 .700 .910
Ours (PAF ) .994 1.0 .989 .991 .999
Ours (JCM) .994 .989 1.0 .997 1.0

umetric representation but uses projections from raw
videos or maps the response of an optical flow algorithm
(Guayacán & Martínez, 2021). Table 1 summarizes the
results obtained by the state-of-the-art method, employ-
ing an architecture with similar characteristics (3D con-
volutions) on both RGB and flow sequences (OF ). We
also included the projections using intermediate repre-
sentations based on PAF and JCM maps.

As observed, in general, all the projections exhibit
a notable performance in classification metrics. This re-
sult could be attributed to the limited dataset or the
stages of Parkinson’s patients within the population. It
is worth noting that the intermediate projections pro-
vide a better representation of the information, correctly
classifying the samples from the mapped videos (achiev-
ing perfect precision, sensitivity, and AUC in one of the
two configurations). Furthermore, the reported AUC
for the intermediate maps not only makes it robust for
binary classification but also demonstrates a marked
class separation. This can be crucial when extending
the analysis to more comprehensive studies with addi-
tional cases. Additionally, these maps can offer greater
explanatory power, breaking down the kinematic infor-
mation into postural components.

5. Conclusions and Perspectives
This work introduced a novel markerless strategy to
characterize spatiotemporal parkinsonian patterns from
pose intermediate representations. In this work, firstly
an Openpose architecture is tuned to learn locomotion
from Parkinson disease and control subjects. From such
pose generator is taken the intermedia bank of activa-
tions related to probability maps of joints and vector file
maps of pose structure. These intermediate representa-
tions are mapped to a 3D convolutional net, adjusted
to learn discriminative patterns among two considered
populations. The results showed a high capacity in this
task, with these indices being potential indicators of ab-
normalities associated with the disease during locomo-
tion tasks. Future works include the analysis on extra
datasets with a larger cohort of patients with different
degrees of the disease.
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