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Abstract.
Today, alcohol drinking frequently accompanies socialising as a routine activity in
various groups of society. 84.0% of individuals aged 18 and above in the United States
have drunk alcohol at some point in their life (National Institute on Alcohol Abuse
& US, 2023). Similarly, 81.7% of Norwegians in the age group 16 to 79 have drunk
alcohol in 2021 (Bye, 2018). Driving after the consumption of alcohol is a worldwide
problem, causing a large number of deaths and injuries a year. This work proposes the
first steps towards developing an electroencephalography (EEG)-based alcohol detector
conceived with the idea to prevent people from driving under the influence of alcohol.
This includes the design of an experimental protocol for EEG data collection, during
which participants performed the Flanker task, and their blood alcohol concentration
(BAC) was measured. The resulting data set consists of two sessions per participant,
both while they are affected and not-affected by alcohol. Statistical analysis of the
Flanker task indicated that participants were affected by alcohol and, therefore, their
EEG signals were expected to be affected as well. The collected EEG signals were
used as input for intra-subject and inter-subject models, both based on the EEGNet
architecture. The intra-subject model obtained a mean classification accuracy of
90.7% and the inter-subject model a mean classification accuracy of 62.9%. The result
suggest that alcohol can be detected with high accuracy when developing individual
models and above the change accuracy when using a general model. Therefore, the
work presented here could be used as the first steps towards the development of an
EEG-based alcohol detector for drivers.
Resumen.
Hoy en día, el consumo de alcohol frecuentemente acompaña la socialización como una
actividad rutinaria en varios grupos de la sociedad. El 84.0% de las personas mayores
de 18 años en los Estados Unidos han consumido alcohol en algún momento de sus
vidas (National Institute on Alcohol Abuse & US, 2023). De manera similar, el 81.7%
de los noruegos en el grupo de edad de 16 a 79 años consumieron alcohol en 2021 (Bye,
2018). Conducir después del consumo de alcohol es un problema mundial que causa
un gran número de muertes y lesiones cada año. Este trabajo propone los primeros
pasos hacia el desarrollo de un detector de alcohol basado en electroencefalografía
(EEG), concebido con la idea de prevenir que las personas conduzcan bajo los efectos
del alcohol. Esto incluye el diseño de un protocolo experimental para la recopilación
de datos EEG, durante el cual los participantes realizaron la prueba de Flanker y se
midió su concentración de alcohol en la sangre (BAC). El conjunto de datos resultante
consta de dos sesiones por participante, tanto mientras estaban afectados como no
afectados por el alcohol. El análisis estadístico de la prueba de Flanker indicó que
los participantes estaban afectados por el alcohol y, por lo tanto, se esperaba que sus
señales EEG también lo estuvieran. Las señales EEG recopiladas se utilizaron como
entrada para modelos intra-participantes e inter-participantes, ambos basados en la
arquitectura EEGNet. El modelo intra-participantes obtuvo una precisión media de
clasificación del 90.7%, y el modelo inter-participantes una precisión media del 62.9%.
Los resultados sugieren que el alcohol puede detectarse con alta precisión al desarrollar
modelos individuales y con una precisión superior al azar al usar un modelo general.
Por lo tanto, el trabajo presentado aquí podría servir como los primeros pasos hacia el
desarrollo de un detector de alcohol basado en EEG para conductores.
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1. Introduction
Electroencephalography (EEG) is a technique used for
capturing brain signals by placing electrodes on the scalp.
Today, EEG is a commonly used technique for studying
the brain. Many studies (Farsi et al., 2020; Mukhtar et
al., 2021; Singhal et al., 2021) have been investigating
if it is possible to diagnose alcoholism using EEG data.
Several of these studies have been successful, resulting in
a high classification accuracy. However, only one study
(Ek et al., 2013) has focused on using EEG data for the
detection of alcohol in a healthy body. Accurate detec-
tion of alcohol in a healthy body is important in the
prevention of traffic accidents, caused by drunk driving.

Driving under the influence of alcohol is a worldwide
problem. It is estimated to cause the death of at least
273000 road users every year, although the actual num-
ber is believed to be higher (Vissers et al., 2018). The le-
gal blood alcohol concentration (BAC) for driving varies
for different countries, but, for most, the BAC limit is
within the range of .2% to .8% (World Health Organiza-
tion, 2020).

In order to decrease the number of injuries and deaths,
it is important to stop drunk drivers before the accident
happens. Today, using breathalysers is the common way
of detecting if a person is under the influence of alcohol.
The breathalyser estimates the BAC value by using a
single breath sample. It is the tool used by the traffic
police when they are suspecting that a person is driving
under the influence of alcohol.

Although using breathalysers is a quick and inex-
pensive way of measuring the BAC, it has some disad-
vantages. Using breath samples is an indirect way of
measuring the amount of alcohol in the blood, and inac-
curate measurements can occur due to factors such as
residual alcohol or juice in the mouth, or temperature
and humidity (Nordstrøm-Hauge & Vassbotn, 2023) and
due to undetectable alcohol level by breathalyser that
can be still relevant on the brain.

Several studies (Celaya-Padilla et al., 2021; Murata
et al., 2010; Vijayan & Sherly, 2019) have been propos-
ing an in-vehicle alcohol detector that can inform drivers
if their level of alcohol intoxication is above the legal
limit, or if their level of drowsiness is considered too high
for driving. These factors can be determined by using
several different methods. (Celaya-Padilla et al., 2021)
is using low-cost alcohol MQ3 sensors together with ma-
chine learning, while (Murata et al., 2010) is monitoring
biological signals like the body-trunk plethysmogram
and respiration of the driver. (Vijayan & Sherly, 2019)
is using a neural network for image processing of the
face of the driver. However, the use of EEG signals for
alcohol detection in driving scenarios has been scarcely
reported, and it remains a subject of ongoing research
to determine whether utilising EEG signals instead of
breath samples could yield a system with higher preci-

sion and accuracy than a breathalyser. Therefore, this
paper proposes the first step towards the design of an al-
cohol detector system for onboard detection of the pres-
ence of alcohol in drivers.

2. Methods
2.1 Participants
Twenty healthy subjects took part in this study. The
selection criteria were being between 20-30 years old,
be right-handed, and be a social drinker, so neither ab-
stained from alcohol nor suffered from alcohol use dis-
orders. All participants were healthy young adults with
no history of drug or alcohol abuse, no history of drug
or alcohol abuse in close family, and no major medi-
cal issues or history of psychiatric problems. This was
screening in a questionnaire during the recruitment pro-
cess, potential participants that did not comply with
those requirements were excluded from the study. In
contrast to previous studies presented in (Cohen et al.,
1993; Ehlers et al., 1989; Stenberg et al., 1994) where
only males participated, this study aimed to have a gen-
der balanced dataset. Therefore, equal number of males
(23.7 years old ± .78) and females (24.3 years old ± 1.42)
were recruited. The study followed the guidelines of the
Helsinki declaration, it was approved by local authority
(Norsk Senter for Forskningdata) and all participants
gave written informed consent prior to participation.

2.2 Protocol and Data Collection
In order to collect alcohol —and non-alcohol affected
EEG data—, each participant took in two sessions. We
refer them as alcohol and non-alcohol sessions. In the
alcohol session, a vodka-based drink mixed with orange
and lime juice was served, the drink had a calculated
concentration of ethanol of .45 g/kg. In the non-alcohol
session, the alcohol was substituted with a vodka-flavour-
ed mix. The participants were not informed in which
session they were given alcohol or not alcohol drink.

During each session, the EEG signals were monitored
using 16 channels, for this we used two Unicorn Hybrid
Black (gtec, Austria) headsets with eight electrodes each.
Lab Streaming Layer (LSL) was used to centralise the
data collection and synchronise the EEG measurements
from both devices. To monitor the BAC, a breathalyser
Alcoscan ALC-1 (Sentech Korea corporation, Republic
of Korea) with ±.05% at 1% accuracy and 95% of pre-
cision was utilised. Each session started with a mea-
surement of BAC value to ensure the participant has
not drunk alcohol before the session. After that, a set
of pre-drink recordings took place, where EEG during
resting state with eyes open was recorded during five
minutes, and then during a Flanker task (see section
2.3) for approximately seven minutes. After this the
participant was served with the drink and had 10 min-
utes for the ingestion. After finishing the drink, a series
of two resting state EEG and two BAC measurements
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took place. Then, the participants performed a second
flanker test, and finalised with BAC measurement, rest-
ing state EEG, and a final BAC measurement. Each ses-
sion lasted approximately 66 minutes. Figure 1 shows
the data collection session in detail. A more detailed
presentation of the designed protocol and experiments is
available in (Nordstrøm-Hauge, 2022; Vassbotn, 2022).

The 16 channels were placed within the 10-10 stan-
dard positions in locations Fp1, Fp2, AF7, AF8, FC3,
FC4, FC5, FC6, T7, T8, Cz, PO7, PO8, O1, O2, and
Oz. The selection of those channels was based on the re-
sults presented in (Bavkar et al., 2021), where a discrete
harmony search was performed to find which positions in
the 10-10 systems were optimal for alcoholism detection,
resulting in 12 optimal channels. In order to use the 16
channels available, four channels were added to the opti-
mal set to preserve symmetricity between the two brain
hemispheres. The channels displayed in Figure 2 were
optimal channels and added channels are coloured in
green and orange, respectively.

2.3 Flanker Test
The Flanker test measures the selective attention, accu-
racy and response time (RT) of the participant (Eriksen
& Eriksen, 1974). This is of interest as alcohol is known
for affecting both the attention span and the RT of in-
toxicated people (Steele & Josephs, 1990). The Flanker
task also tests a person’s ability to ignore irrelevant stim-
uli around a focal point. This can be compared with how
a driver needs to keep their focus on the road, while still
retaining an overview of the surroundings.

During this test, participants are shown a sequence
of five letters on a screen. They are instructed to press
either the A-key or the L-key on the keyboard based on
the middle letter. If the middle letter is X or C, they
should press A, and if it is V or B, they should press
L. The middle letter is surrounded by four identical let-
ters, which are also either X, C, V, or B. This creates
16 possible combinations of letters. If the surrounding
letters and the middle letter indicate the same response,
it is called a congruent trial; if they indicate different
responses, it is called an incongruent trial (Nordstrøm-
Hauge & Vassbotn, 2023). Participants see all 16 com-
binations presented randomly (see Table 1, forming a
block. Between each combination, a cross is shown for
two seconds before the next combination appears. The
entire task consists of 6 blocks, totalling 96 letter se-
quences shown to the participants. Of these, 48 are con-
gruent and 48 are incongruent. After each block, there
is a seven-second break. The RT and the response of
the participant are recorded.

2.4 EEG Data Pre-Processing
Before the collected data set was used as input to the
classifiers, some preprocessing was applied. First, the 5-
minute EEG recordings were split into epochs of 5 seconds.

Table 1

The Stimuli Presented during one Block in the
Flanker Task

Congruent Incongruent
XXXXX XXVXX
XXCXX XXBXX
CCCCC CCVCC
CCXCC CCBCC
VVVVV VVXVV
VVBVV VVCVV
BBBBB BBXBB
BBVBB BBCBB

After this, the data was split into a training and a test set.
The data set was not subjected to any artifact removal or
filtering procedures; only normalisation was performed.

2.5 Classification of EEG Data
To evaluate the possibility of detecting the alcohol-affect-
ed EEG signals, two models were trained on the dataset.
They were implemented using a Convolutional Neural
Network (CNN) architecture made specifically for the
classification and interpretation of EEG signal called
EEGNet (Lawhern et al., 2018). EEGNet is known
for performing well on different types of EEG signals,
even when the available data set is very limited (Lawh-
ern et al., 2018). The models were optimised by using
the Adam algorithm with a learning rate of .001. The
used loss function was binary cross entropy. The hyper-
parameters of EEGNet were chosen to be their default
values; F1 = 8, D = 2, F2 = 16. The first implemented
model was trained only on a single individual data, refer-
eed here as intra-subject model; while the second model
was trained based on multiple individual data, refereed
here as inter-subject model. Both are presented in the
following sections.

2.5.1 Intra-subject Model
This model was trained using only data from the same
participant. In this model, all 5-second epochs from the
same 5-minute run were placed in the same set. Among
the non-alcohol and alcohol sessions there are in total
five non-alcohol runs (n1, n2,. . . , n5) and three alcohol
runs (a1, a2, a3) per participant, each one of 5-minutes.
One run per each category were selected as test set, and
over the remaining data, 3-fold cross validation was used
to train and validate the model. Figure 3 presents an
example of the data split for training, validation and
testing sets in the intra-subject model.

2.5.2 Inter-Subject Model
An inter-subject model is proposed to evaluate generali-
sation of the detection alcohol- affected EEG signals, in
this the model is trained with the data from a population
pool and evaluated on an unseen participant. For this
particular model, the EEGNet was trained using a leave-
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Figure 1

A Detailed Overview of the Data Collection Session (Nordstrøm-Hauge & Vassbotn, 2023)

Figure 2

The 16 Channels used for the Recording of EEG Signals

Note. The red channels are the four leftover channels added to the optimal channels for symmetry. Adapted
from (Hu & Zhang, 2019).

Figure 3

Example of Individual Data Split for Training, Validation and Testing Sets in the Intra-Subject Model
(Nordstrøm-Hauge & Vassbotn, 2023)
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one-subject-out strategy, by using data from 19 of the
20 participants. The remaining participant data is used
as the test set. During training, the hyperparameters of
the model were chosen by using 3-fold cross-validation.

2.6 Performance Metrics
To get an unbiased evaluation of the performance of the
models, several evaluation metrics were used: accuracy,
precision, recall, F1 score and specificity, these are fur-
ther described in (Nordstrøm-Hauge & Vassbotn, 2023).
These metrics describe the performance of the model
on unseen data. As the problem described here is a two-
class classification problem we made use of the confusion
matrix to represent the performance of the model. It dis-
plays the true negative (TN) and true positive (TP) pre-
dictions on the diagonal. The anti-diagonal shows the
number of false negative (FN) and false positive (FP)
predictions. Based on this matrix the performance met-
rics were computed using the following equations:

Accuracy = TN +TP

TN +FN +TP +FP

Precision = TP

TP +FP

Recall = TP

TP +FN

F1 score = 2× precision× recall
precision+ recall

= TP

2TP +FP +FN

Specificity = TN

TN +FP

Figure 4

Average BAC Values for Males, Females and all Par-
ticipants during the Alcoholic Recording Session

Note. The inserted window shows an enlarged ver-
sion of the most relevant area (Nordstrøm-Hauge
& Vassbotn, 2023).

3. Results
3.1 BAC Evolution
The measured BAC values after ingestion of alcohol for
each participant are presented in Table 2. Before the
recordings, all participants had a BAC value of .000%.
In the non-alcoholic recording session, all participants
had a BAC value of .000% through-out the session. Fig-
ure 4 shows the average BAC values for males, females
and all participants at each BAC measuring point dur-
ing the alcoholic recording session.

Table 2

The BACs of All Participants at Approximately 15,
25, 37, and 42 Minutes after (m.a.) Alcohol Inges-
tion (Nordstrøm-Hauge & Vassbotn, 2023)
Participant Gender 15

m.a.
25

m.a.
37

m.a.
42

m.a.
P01 Female .450% .440% .430% .450%
P02 Female .270% .330% .380% .400%
P03 Female .420% .420% .500% .540%
P04 Female .440% .430% .490% .450%
P05 Female .440% .450% .470% .490%
P06 Male .310% .390% .400% .430%
P07 Female .110% .140% .190% .210%
P08 Male .250% .260% .290% .320%
P09 Male .420% .430% .440% .450%
P10 Female .340% .260% .260% .360%
P11 Male .550% .530% .540% .500%
P12 Male .390% .370% .460% .480%
P13 Female .520% .470% .490% **
P14 Male .430% .470% .480% .480%
P15 Female .530% .480% .570% .560%
P16 Female .480% .460% .580% .540%
P17 Male .250% .280% .290% .380%
P18 Male .480% .380% .470% .520%
P19 Male .320% .310% .340% .400%
P20 Male .630% .470% .480% .490%

Note. ** No measurement due to technical issue
with the breathalyser.

3.2 3.2 Behavioural Data from the Flanker Task
Figure 5 presents the average accuracy results from the
Flanker task performed after drink ingestion. As seen
in Figure 5a, the average accuracy for all participants
decreases with a value of .01 from .987 to .977 when
alcohol is present. The difference in accuracy is signif-
icant with a p-value of p = .015836. Figure 5b shows
the average RT for all participants. After ingestion of
alcohol, the RT decreased by 25 ms., from 675 to 650
ms. The difference in RT is significant with a p-value of
p = .000091.

3.3 Intra-Subject Classification
The performance of the intra-subject model is summaris-
ed in Table 3. This performance was obtained on the
performance of classification of the test set. As shown,
13 of the participants scored perfectly across all metrics,
where the lowest accuracy was obtained for P14, with
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Figure 5

Average Accuracy and RTs for the Flanker Task (Nordstrøm-Hauge & Vassbotn, 2023)

(a) Average accuracy. (b) Average RT.

Table 3

The Performance of the Individual Model across Sessions on the test Set when the Data is Split into Epochs
of 5 Seconds

Participant Accuracy Precision Recall F1 score Specificity
P01 1.000 1.000 1.000 1.000 1.000
P02 1.000 1.000 1.000 1.000 1.000
P03 1.000 1.000 1.000 1.000 1.000
P04 1.000 1.000 1.000 1.000 1.000
P06 1.000 1.000 1.000 1.000 1.000
P09 1.000 1.000 1.000 1.000 1.000
P10 1.000 1.000 1.000 1.000 1.000
P12 1.000 1.000 1.000 1.000 1.000
P13 1.000 1.000 1.000 1.000 1.000
P15 1.000 1.000 1.000 1.000 1.000
P17 1.000 1.000 1.000 1.000 1.000
P18 1.000 1.000 1.000 1.000 1.000
P20 1.000 1.000 1.000 1.000 1.000
P08 .941 1.000 .883 .938 1.000
P11 .908 .845 1.000 .916 .816
P07 .808 1.000 .616 .762 1.000
P16 .808 1.000 .616 .762 1.000
P19 .616 1.000 .233 .378 1.000
P05 .555 1.000 .466 .635 1.000
P14 .508 1.000 .016 .032 1.000

Average .907 .992 .842 .871 .991
Note. Results marked in green are above the average value of that metric, and those marked in red are below
average (Nordstrøm-Hauge & Vassbotn, 2023).

an accuracy of 50.8%. The best-performing metric is
precision, with an average of 99.2%, closely followed by
specificity with 99.1%.

3.4 Inter-Subject Classification
In Table 4, the results of the inter-subject model on the
test set are listed. The participant column shows which
participant was leave-out in for the test set. The aver-
age accuracy across all participants is 62.9%. The best-
performing metric is specificity, with 81.5%. The best
accuracy was achieved when P15 and P09 were in the
test set, with an accuracy of 94.1% and 90.2%, respec-

tively. The lowest accuracy was obtained using when
P04, P19 and P02 where leave out, resulting in accu-
racy levels of 25.0%, 29.4% and 29.5%, respectively.

4. Discussion
The aim of this study is to pave the way for the de-
sign of an EEG-based alcohol detection system for the
onboard monitoring of drivers. In this section, the ob-
tained results are discussed. As Figure 4 shows, the
average BAC value for all participants decreases from
the first to the second measurement after drink inges-
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Table 4

The Performance of the General Model on the Test Set
Participant Accuracy Precision Recall F1 score Specificity

P15 .941 1.000 .856 .922 1.000
P09 .902 .814 1.000 .897 .829
P13 .875 .750 1.000 .857 .800
P01 .857 1.000 .666 .800 1.000
P16 .760 1.000 .361 .531 1.000
P20 .727 .645 .606 .625 .800
P05 .694 1.000 .267 .431 1.000
P06 .682 1.000 .333 .500 1.000
P10 .682 .000 .000 .000 1.000
P11 .664 .621 .528 .571 .764
P08 .642 1.000 .044 .085 1.000
P07 .625 .500 .333 .400 .800
P03 .625 .500 .666 .571 .600
P17 .619 .000 .000 .000 .887
P12 .550 .000 .000 .000 .880
P14 .500 .000 .000 .000 .800
P18 .394 .000 .000 .000 .630
P02 .295 .000 .000 .000 .615
P19 .294 .000 .000 .000 .470
P04 .250 .000 .000 .000 .400

Average .629 .492 .333 .360 .814

tion. After this, the average BAC increases. Conse-
quently, the peak BAC value was not reached at 25 min-
utes after ingestion. Even though the shape of the BAC
curve can vary highly during the absorption phase, a
decrease in the BAC normally indicates that the peak
value has been reached and that the absorption phase is
over. Therefore, this dip in value is most likely not due
to the unpredictable nature of the absorption phase. A
possible explanation can be that this dip is a part of a
spike in the BAC value. These can be caused by the sud-
den opening and closing of the pyloric sphincter (Jones,
2008). Using a breathalyser can also make these spikes
more apparent. Therefore, the average dip in BAC value
should not be emphasised. To avoid measuring a de-
crease like this, the BAC could be measured by using
another instrument than a breathalyser, or it could be
measured in intervals of more than 10-12 minutes.

Considering the increasing trend of the BAC curves
(Figure 4), most participants did not reach the peak
BAC value. The preferred outcome of the experiment
would be to have the participants reach the BAC peak
during the alcoholic recording session. This is to enable
analyses of the behaviour of the participants while un-
der peak BAC influence (Nordstrøm-Hauge & Vassbotn,
2023). To increase the chances of the participants reach-
ing the peak BAC, they could have been instructed to
not eat beforehand, or they could have been served an
undiluted alcoholic drink. Otherwise, the length of each
experiment session would have to be increased.

In the Flanker results, both the average accuracy
(Figure 5a) and the average RT (Figure 5b) decrease
from the non-alcoholic to the alcoholic Flanker task. As

indicated by their p-values, both of these changes are
significant. The decreases can be explained by the disin-
hibition caused by the alcohol. The participants answer
faster due to impulsiveness, and therefore they might
not be aware of the correct answer before they press a
key. As all participants performed the Flanker task in
the pre-experiment recording, the changes between the
alcoholic and non-alcoholic Flanker tasks are believed
to be caused by alcohol alone, and not nervousness.

The Flanker task was chosen as a part of this exper-
iment to test the participants’ ability to filter relevant
information from irrelevant. This can be compared to
how a driver needs to be aware of both the road they
are driving on and their surroundings. As the results in
Figure 5 show, the consumption of even a small amount
of alcohol seems to significantly affect a person’s ability
to make the right decision as fast as needed.

The intra-subject model provides a realistic imple-
mentation of an alcohol detector tailored for individuals.
It is noticeable that the performance was the highest
possible for 13 of 20 participants, and only three par-
ticipants got an accuracy lower than .8. This indicates
that an alcohol detector can be tailored for individuals.
In the case of the low performance scores an explana-
tion can be the differences in the EEG signals across
the recording sessions. These differences can be due to
an increased impedance between the sessions, or due to
a small change in the EEG cap positions between the
two sessions.

The inter-subject model has large differences in its
performance (Table 4). These results are not surprising,
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as there are differences in the EEG signals across par-
ticipants (Nordstrøm-Hauge & Vassbotn, 2023). This
leads to difficulties when training and testing on differ-
ent participants. This indicates that the general model
was struggling to correctly classify alcohol epochs. Some
of the participants where the classifier was struggling
present a lower BAC value than the averages. This might
lead to less clear alcohol features as the brain is less
affected by alcohol, which can make the classification
of alcohol-affected signals more difficult. Despite this,
the inter-subject model does provide confidence that an
EEG- based alcohol detector can become a helpful tool
in the future, as it performed above the chance level for
14 of the 20 subjects and obtained an accuracy higher
than 0.8 on participants P15, P09, P13, and P01. How-
ever, the performance must be significantly improved to
use this approach as an alternative to a breathalyser.

The collected data set has some limitations. It was
not possible to measure the scalp-electrode impedance
while collecting the data. This means the impedance
could be higher than desired, and this could have led to
the data being more challenging to classify than it could
have been with a lower impedance. During the collection
of the data, construction work was performed outside
the data collection room. The noise from this work could
have affected the participants, and, consequently, the
noise interference could have affected the classification
results negatively.

5. Conclusion
This work shows that it is possible to differentiate alcohol-
affected EEG signals from those that are unaffected.
The Flanker results indicated that the participants were
affected by alcohol, which suggests that the EEG signals
might be affected as well. These results are supported
by the performance of the classifiers, especially the intra-
subject one. The high accuracy indicates that EEGNet
can extract features which characterise alcohol-affected
signals. The performance of the inter-subject model is
not as good as it struggles to correctly classify alcohol-
affected signals. There could be numerous reasons for
this, and improving the performance should be further
explored. Still, the models presented in this paper could
be the first step towards creating an EEG-based alcohol
detector prevention of drunk-driving.

References
Bavkar, S., Iyer, B., & Deosarkar, S. (2021). Optimal

EEG channels selection for alcoholism screen-
ing using EMD domain statistical features and
harmony search algorithm. Biocybernetics and
Biomedical Engineering, 41 (1), 83–96. https://
doi.org/10.1016/j.bbe.2020.11.001

Bye, E. K. (2018). Alkoholbruk i den voksne befolknin-
gen. Norwegian Institute of Public Health, Web-
publication, 9.

Celaya-Padilla, J. M., Romero-González, J. S., Galvan-
Tejada, C. E., Galvan-Tejada, J. I., Luna-García,
H., Arceo-Olague, J., Gamboa-Rosales, N. K.,
Sifuentes-Gallardo, C., Martinez-Torteya, A., la
Rosa, J. I., & Gamboa-Rosales, H. (2021). In-
vehicle alcohol detection using low-cost sensors
and genetic algorithms to aid in the drinking
and driving detection. Sensors, 21 (22), 7752.
https://doi.org/10.3390/s21227752

Cohen, H. L., Porjesz, B., & Begleiter, H. (1993). Etha-
nol-inducedalterations inelectroencephalograph-
ic activity in adult males. Neuropsychopharma-
cology, 8 (4), 365–370. https://doi.org/10.1038/
npp.1993.36

Ehlers, C. L., Wall, T. L., & Schuckit, M. A. (1989).
EEG spectral characteristics following ethanol
administration in young men. Electroencephalog-
raphy and Clinical Neurophysiology, 73 (3), 179–
187. https://doi.org/10.1016/0013- 4694(89)
90118-1

Ek, Z., Akg, A., & Bozkurt, M. R. (2013). The classifica-
tion of EEG signals recorded in drunk and non-
drunk people. International Journal of Com-
puter Applications, 68 (10). https : / / doi . org /
10.5120/11619-7018

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of
noise letters upon the identification of a target
letter in a nonsearch task. Perception & Psy-
chophysics, 16 (1), 143–149. https://doi.org/10.
3758/BF03203267

Farsi, L., Siuly, S., Kabir, E., & Wang, H. (2020). Clas-
sification of alcoholic EEG signals using a deep
learning method. IEEE Sensors Journal, 21 (3),
3552–3560.

Hu, L., & Zhang, Z. (2019). EEG signal processing and
feature extraction. EEG Signal Processing and
Feature Extraction, 1–437. https://doi.org/10.
1007/978-981-13-9113-2/COVER

Jones, A. W. (2008). Biochemical and physiological re-
search on the disposition and fate of ethanol
in the body. In Medicolegal Aspects of Alcohol
(5th Ed., pp. 47–128). Lawyers; Judges Publish-
ing Company.

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon,
S. M., Hung, C. P., & Lance, B. J. (2018). EEG-
Net: a compact convolutional neural network
for EEG-based braincomputer interfaces. Jour-
nal of Neural Engineering, 15 (5), 56013. https:
//doi.org/10.1088/1741-2552/aace8c

Mukhtar, H., Qaisar, S. M., & Zaguia, A. (2021). Deep
convolutional neural network regularization for
alcoholism detection using EEG signals. Sen-

int.j.psychol.res | doi: 10.21500/20112084.7434 98

https://doi.org/10.1016/j.bbe.2020.11.001
https://doi.org/10.1016/j.bbe.2020.11.001
https://doi.org/10.3390/s21227752
https://doi.org/10.1038/npp.1993.36
https://doi.org/10.1038/npp.1993.36
https://doi.org/10.1016/0013-4694(89)90118-1
https://doi.org/10.1016/0013-4694(89)90118-1
https://doi.org/10.5120/11619-7018
https://doi.org/10.5120/11619-7018
https://doi.org/10.3758/BF03203267
https://doi.org/10.3758/BF03203267
https://doi.org/10.1007/978-981-13-9113-2/COVER
https://doi.org/10.1007/978-981-13-9113-2/COVER
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1088/1741-2552/aace8c
https://revistas.usb.edu.co/index.php/IJPR/index


EEG Based Alcohol Detection System

sors, 21 (16), 5456. https://doi.org/10.3390/
s21165456

Murata, K., Fujita, E., Kojima, S., Maeda, S., Ogura,
Y., Kamei, T., Tsuji, T., Kaneko, S., Yoshizumi,
M., & Suzuki, N. (2010). Noninvasive biologi-
cal sensor system for detection of drunk driving.
IEEE Transactions on Information Technology
in Biomedicine, 15 (1), 19–25. https://doi.org/
10.1109/titb.2010.2091646

National Institute on Alcohol Abuse, & US, A. (2023).
Alcohol Use in the United States: Age Groups
and Demographic Characteristics. NIH. http://
surl.li/plfnjr

Nordstrøm-Hauge, I. J. (2022). Design of protocol and
collection of data for an EEG based alcohol de-
tector. https://doi.org/10.13140/RG.2.2.36378.
11205

Nordstrøm-Hauge, I. J., & Vassbotn, M. (2023). EEG-
Based Alcohol Detection System with AI Tech-
niques: Towards the Design of BCI Systems for
Driver Monitoring. Norwegian University of Sci-
ence & Technology.

Singhal, V., Mathew, J., & Behera, R. K. (2021). De-
tection of alcoholism using EEG signals and a
CNN-LSTM-ATTN network. Computers in Bi-
ology and Medicine, 138, 104940. https://doi.
org/10.1016/j.compbiomed.2021.104940

Steele, C. M., & Josephs, R. A. (1990). Alcohol myopia:
Its prized and dangerous effects. American Psy-
chologist, 45 (8), 921.

Stenberg, G., Sano, M., Rosén, I., & Ingvar, D. H. (1994).
EEG topography of acute ethanol effects in rest-
ing and activated normals. Journal of Studies
on Alcohol, 55 (6), 645–656. https://doi.org/10.
15288/jsa.1994.55.645

Vassbotn, M. (2022). Design of protocol and collection
of data for an eeg based alcohol detector. https:
//doi.org/10.13140/RG.2.2.15013.37600

Vijayan, V., & Sherly, E. (2019). Real time detection
system of driver drowsiness based on representa-
tion learning using deep neural networks. Jour-
nal of Intelligent & Fuzzy Systems, 36 (3), 1977–
1985. https://doi.org/10.3233/JIFS-169909

Vissers, L., Houwing, S., & Wegman, F. (2018). Alcohol-
related road casualties in official crash statistics.
International Transport Forum. https://www.
itf- oecd.org/sites/default/files/docs/alcohol-
related-road-casualties-official-crash-statistics.
pdf

World Health Organization. (2020). Legal blood alcohol
concentration (BAC) limits. https://www.who.
int/data/gho/data/indicators/indicator-details/
GHO/legal-blood-alcohol-concentration-(bac)-
limits

int.j.psychol.res | doi: 10.21500/20112084.7434 99

https://doi.org/10.3390/s21165456
https://doi.org/10.3390/s21165456
https://doi.org/10.1109/titb.2010.2091646
https://doi.org/10.1109/titb.2010.2091646
http://surl.li/plfnjr
http://surl.li/plfnjr
https://doi.org/10.13140/RG.2.2.36378.11205
https://doi.org/10.13140/RG.2.2.36378.11205
https://doi.org/10.1016/j.compbiomed.2021.104940
https://doi.org/10.1016/j.compbiomed.2021.104940
https://doi.org/10.15288/jsa.1994.55.645
https://doi.org/10.15288/jsa.1994.55.645
https://doi.org/10.13140/RG.2.2.15013.37600
https://doi.org/10.13140/RG.2.2.15013.37600
https://doi.org/10.3233/JIFS-169909
https://www.itf-oecd.org/sites/default/files/docs/alcohol-related-road-casualties-official-crash-statistics.pdf
https://www.itf-oecd.org/sites/default/files/docs/alcohol-related-road-casualties-official-crash-statistics.pdf
https://www.itf-oecd.org/sites/default/files/docs/alcohol-related-road-casualties-official-crash-statistics.pdf
https://www.itf-oecd.org/sites/default/files/docs/alcohol-related-road-casualties-official-crash-statistics.pdf
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/legal-blood-alcohol-concentration-(bac)-limits
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/legal-blood-alcohol-concentration-(bac)-limits
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/legal-blood-alcohol-concentration-(bac)-limits
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/legal-blood-alcohol-concentration-(bac)-limits
https://revistas.usb.edu.co/index.php/IJPR/index

	Introduction
	Methods
	Participants
	Protocol and Data Collection
	Flanker Test
	EEG Data Pre-Processing
	Classification of EEG Data
	Intra-subject Model
	Inter-Subject Model

	Performance Metrics

	Results
	BAC Evolution
	3.2 Behavioural Data from the Flanker Task
	Intra-Subject Classification
	Inter-Subject Classification

	Discussion
	Conclusion

