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ABSTRACT 
 

Confidence intervals and measures of effect size are gradually becoming the standard way of reporting the results 
of statistical analyses in research articles, used instead of or in addition to p values. However, this shift in research practices 
barely affected teaching practices up to now. This paper is the third of a series written to serve as a general reference on the 
use of confidence intervals in quantitative social sciences. Its purpose is to provide guidelines, advices and useful tricks of 
the trade that will allow readers (a) to face most of the statistical problems emerging in real-life research settings and (b) to 
improve their understanding of confidence intervals and answer more efficiently their questions of interest. The first part of 
the article briefly introduces the basic elements of an approach based on confidence intervals: Calculations, interpretation, 
and hypothesis testing. The second part is an attempt to present some of the most important (but sometimes neglected) 
advanced issues concerning confidence intervals: Graphic representations, complex distributions, national surveys, the 
larger family of interval statistics (e.g., prediction intervals), and the Bayesian approach to probabilities.  
 
Key words: Confidence intervals, interval statistics, guidelines, graphic representation, national surveys, Bayesian 
approach. 
 

RESUMEN 
 

Los intervalos de confianza (IC) y las medidas de tamaño de efecto están convirtiéndose gradualmente en la forma 
estándar de reportar resultados de análisis estadísticos en artículos de investigación, en lugar de, o además de, los valores p. 
Sin embargo, tal cambio en las prácticas de investigación se ha comunicado poco en la enseñanza de la estadística. Este 
artículo es el tercero en una serie escritos que sirven como referencia general sobre el use de los IC en las ciencias sociales. 
Este artículo tiene como propósito proveer guías, consejos, y trucos útiles que le permitan al lector (a) enfrentar la mayoría 
de problemas estadísticos que suceden en situaciones reales de investigación y (b) mejorar su conocimiento sobre los IC y 
contestar más eficientemente las preguntas de interés. La primera parte del artículo presenta brevemente los elementos 
básicos acerca del uso de los IC: cómo computarlos, cómo interpretarlos, y cómo usarlos en las pruebas de hipótesis.  La 
segunda parte presenta algunos de los asuntos más importantes (aunque algunas veces negados) acerca de los IC: 
representaciones gráficas, distribuciones complejas, encuestas nacionales, la familia de la estadística de los intervalos (e.g., 
intervalos de predicción), y la aproximación Bayesiana a las probabilidades. 

.  
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aproximación Bayesiana. 
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Tests of statistical significance, also known as null 
hypothesis testing (NHT), have been the first established 
gold standard for reporting statistical results and for 
deciding upon the scientific value of hypotheses in 
quantitative social sciences. Due to the major problems 
inherent to this approach, confidence intervals and 
measures of effect size are gradually becoming the standard 
way of reporting the results of statistical analyses in 
research articles, used instead of or in addition to p values. 
However, this shift in research practices barely affected 
teaching practices up to now. Indeed, many introductory 
courses and manuals in statistics for the social sciences still 
present NHT as the only paradigm and most of those who 
present confidence intervals and measures of effect size still 
cover them only briefly and present NHT as the main 
statistical tool.  

 
This paper is the third of a series that I wrote to 

serve as a general reference on the use of confidence 
intervals in quantitative social sciences. This series was 
written for NHT-trained researchers and students, with the 
explicit objective of bridging the gap between their NHT 
training and the actual publication standards in the field. 
While a basic introduction to confidence intervals is 
provided in each paper, each one focuses on a specific 
aspect of the issue and they aim at being complementary. 
The first paper (Beaulieu-Prévost, 2007) clarifies the major 
methodological and epistemological problems of NHT and 
introduces confidence intervals as a solution to these 
problems. The second paper (Beaulieu-Prévost, 2006) 
focuses on the basic mechanics of calculating confidence 
intervals and testing hypotheses with an approach based on 
confidence intervals. The purpose of this third paper is to 
provide practical guidelines, advices and useful tricks of the 
trade that will allow readers (a) to face most of the 
statistical problems emerging in real-life research settings 
and (b) to improve their understanding of confidence 
intervals and answer more efficiently their questions of 
interest. Since it is impossible to cover every aspect of the 
subject in a single article, an effort was also made to 
provide quality references covering certain aspects in more 
depth.  

 
The first part of the article briefly introduces the 

basic elements of an approach based on confidence 
intervals: Calculations, interpretation, and hypothesis 
testing. Readers less familiar with these aspects are referred 
to the second paper of the series (Beaulieu-Prévost, 2006) 
for more details. The second part is an attempt to present 
some of the most important (but sometimes neglected) 
advanced issues concerning confidence intervals: Graphic 
representations, complex distributions, national surveys, the 
larger family of interval statistics, and the Bayesian (i.e., 
subjective) approach to probabilities.  

 

CONFIDENCE INTERVALS 101: 
BASIC INTERPRETATION AND APPLICATIONS 

 
What are confidence intervals? 
 
Confidence intervals are mathematically 

equivalent to tests of significance. In fact, for every test of 
significance, an equivalent confidence interval can be 
constructed. However, instead of providing a p value to 
evaluate if an effect is statistically different from zero, 
confidence intervals provide information about the effect 
size in the sample and the precision of the parametric 
estimation of the effect size.  

 
The basic model of a confidence interval is:  

 
CI = ES ± VC * SE                                (1) 

where the confidence interval (CI) is constructed by adding 
and subtracting from the observed size of an effect (ES) the 
product of its standard error (SE) and the two-tailed critical 
value at the chosen alpha level of statistical significance 
(VC). Every value around the effect size and between the 
upper and lower limits of the interval is included in the 
confidence interval. When the CI excludes zero, the 
equivalent test of significance is statistically significant and 
vice versa. Although the term effect size is now often used 
to refer strictly to standardized, or metric-free, indexes of 
the size of an effect as observed in a sample such as the d 
statistic (Rosenthal, 1994), it is used in the present article in 
its older and simpler form, i.e., to refer to the 
unstandardized size of an effect as observed in a sample 
(e.g., a correlation or a difference between means). The 
term parameter will be used to refer to the unstandardized 
size of an effect in the population.  
 

A confidence interval can be intuitively defined as 
a range of plausible population values for the corresponding 
parameter. By using the sample to estimate population 
values, the central value of a confidence interval (called the 
point estimate) represents both the size of the effect in the 
sample and the best estimate of the parameter in the 
corresponding population, while the two limits of the 
interval represent the estimated lowest and highest probable 
values of the parameter in that population. The width of the 
confidence interval is specified by a percentage value 
equals to one minus the value of the chosen alpha level. 
Thus, an alpha of 0.05 produces a 95% CI. This percentage 
represents the level of confidence of the interval (assuming 
a normally distributed variable).  

 
Calculating confidence intervals in real life 
 
Due to their growing popularity, confidence 

intervals are more and more provided in general statistical 
software, either as a part of the basic results or as an option 
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of the analysis. Also, some software allow an easy access to 
user-written sub-routines that can be easily integrated (e.g., 
STATA). This flexibility often allows researchers to find 
sub-routines designed to calculate an impressive variety of 
confidence intervals. Thus, most calculations should now 
be done quite easily in most situations. A third option is to 
use stand-alone calculators or spreadsheets already 
designed to calculate the required type of confidence 
intervals or to create such calculators if one has the skills 
and the formulae. An example of spreadsheet is available 
with this article via the journal’s web site to calculate 
confidence intervals for correlations and for a difference 
between two correlations (Supplementary Notes). Many 
researchers also provide downloadable spreadsheets or 
online calculators on internet (e.g., Hopkins, 2009; 
Beaulieu-Prévost, 2009). These calculators can generally be 
found with an internet search using keywords such as 
“confidence intervals”, either “spreadsheet” or “calculator”, 
and a keyword describing the type of confidence interval 
that you want to calculate (e.g., “correlations”). Naturally, 
as with any information downloaded from internet, you 
have to evaluate the quality of your calculator from the 
author’s credibility or at least test the calculator with known 
data. Readers interested in the specific calculations of basic 
confidence intervals are referred to the second paper of this 
series (Beaulieu-Prévost, 2007).  

 
A note on statistical inference and sample 

representativeness 
 
As for NHT, estimates produced from confidence 

intervals are based on the assumption that the sample is 
representative of a specific population. Samples created 
from a random sampling procedure are the best example of 
representative samples. In these samples, every individual 
from the target population has equal chances of being part 
of the sample. However, pure random sampling is rarely 
possible in most research fields unless the population is 
small, clearly defined, cooperative and easily accessible.  

 
In many fields of social sciences, samples are 

often non-probabilistic, i.e., the probabilities of selection 
associated to the sampling procedure cannot be determined. 
For example, most of studies in experimental psychology 
are done with either volunteer participants (who are thus 
self-selected) or students who have to participate in studies 
for course credits. In these cases, the assumption of sample 
representativeness is potentially breached, and the validity 
of the conclusions coming from the statistical inferences is 
undermined. Statistical inferences are still a standard 
procedure in these situations but one has to keep in mind 
that when sample representativeness is uncertain, the results 
of statistical inferences (whether NHT or confidence 
intervals) have to be taken with a grain of salt because they 
probably underestimate the standard error, and thus 

overestimate the precision of the parametric estimations. A 
full treatment of sampling procedures cannot be done here 
but researchers should be aware of these issues when 
interpreting statistical results.  

 
How to interpret confidence intervals 
 
To adequately interpret confidence intervals, one 

has to clarify the notion of probability on which traditional 
statistical inference is based. Both NHT and confidence 
intervals are based on what is called the frequentist 
approach to probability. According to a well-known 
frequentist mathematician, “the essential distinction 
between the frequentists and the non-frequentists is, I think, 
that the former, in an effort to avoid anything savouring of 
matters of opinion, seeks to define probability in terms of 
the objective properties of a population, real or 
hypothetical, whereas the latter do not” (Kendall, 1949). 
Indeed, to differentiate probabilities from subjective 
expectations, frequentists defined what they called 
empirical or objective probability as the relative frequency 
of an event over time, i.e., its relative frequency of 
occurrence after repeating a process a large number of 
times (ideally an infinity of times) under similar conditions. 
More explicitly, if confidence intervals could be calculated 
for an infinity of random samples coming from the same 
population, the parameter of the population would be 
included in [1-alpha] of them. It can also be said that 
conclusions stating that a parameter lies within a 
confidence interval will err in [corresponding alpha] of the 
occasions.  

 
However, when a single confidence interval is 

interpreted, it is inadequate to say that there is a probability 
of 95% that the parameter is included in the confidence 
interval or that the parameter is probably included in the 
confidence interval. From a frequentist point of view, it 
makes no sense to speak about probabilities for a specific 
confidence interval. The interval either includes the 
parameter or it doesn’t. The only meaning that can be given 
to a specific confidence interval is as a representation of the 
amount of sampling error associated with that estimate 
within a specified level of uncertainty. It is thus said that all 
the values included in a confidence interval can be 
considered to be equivalent with a level of confidence of 
[1-alpha]. These values are considered equivalent because 
the sensitivity of the statistical analysis (i.e., its statistical 
power) is not high enough to differentiate them.  

 
Confidence intervals can also be interpreted from a 

subjective point of view. These subjective confidence 
intervals are called credible intervals. The details of such an 
interpretation and its consequences will be presented in the 
second part of this article.  
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Hypothesis testing with confidence intervals 
 
Hypothesis testing with confidence intervals is 

quite simple and can basically be done with a glance. The 
first step is to define a hypothesis. It can either be a point 
hypothesis, defined by a single value, or a range hypothesis, 
defined by a range of values. The null hypothesis, stating 
that an effect equals exactly zero, is an example of point 
hypothesis. However, a psychologist interested about the 
clinical significance of a treatment effect might want to test 
if the average symptom reduction due to the treatment is at 
least equal to 4 points on a standardized symptom scale. 
This would be an example of range hypothesis, the range of 
the hypothesis being defined as “any value equal or less 
than -4”.  

 
As long as the adequate confidence interval has 

been calculated, testing a hypothesis simply implies 
verifying which one of the following cases apply: (a) If the 
confidence interval is completely outside of the range of the 
values defined by the hypothesis, the hypothesis is infirmed 
and rejected (i.e., p < 0.05 for an alpha of 0.05), (b) if the 
confidence interval is completely included in the range of 
values defined by the hypothesis, the hypothesis is 
confirmed and accepted (i.e., p > 0.95 for an alpha of 0.05), 
(c) if the confidence interval is partly included in the range 
of values defined by the hypothesis and partly excluded 
from that range, the hypothesis is considered undetermined 
due to a lack of statistical power (i.e., 0.95 > p > 0.05 for an 
alpha of 0.05). A detailed explanation of the topic is 
provided in the second paper of the series (Beaulieu-
Prévost, 2006).  

 
ADVANCED APPLICATIONS: 

 
PRACTICAL GUIDELINES, ADVISES AND TRICKS 

OF THE TRADE 
 
As for any statistical approach to inference, 

knowing the basic elements is often not enough to 
adequately face practical situations. Real-life data tend not 
to behave like the idealized situations used in basic 
examples and some adjustments might be required to adapt 
the theoretical principles to these concrete situations. The 
purpose of this second part is twofold: (a) to present 
solutions to common problems related to the use of 
confidence intervals in real-life research settings, i.e., the 
graphic representation of results, complex distributions and 
complex sampling procedures such as national surveys, and 
then (b) to present advanced procedures that expand the 
possibilities offered by an approach based on confidence 
intervals, i.e., the other types of interval statistics and the 
subjective interpretation of confidence intervals.  

 
 

Graphic representation of confidence intervals 
 
An excellent way to help readers to remember the 

most important results of a study is to present a graphic 
representation of these results. It is rarely done for 
measures of associations (e.g., correlations) but frequently 
done when presenting mean scores and group differences. 
In a traditional NHT approach, the precision of the 
estimated parameters is often represented by putting error 
bars around the point estimations. The function of these 
bars is to represent the amount of measurement error for the 
estimation, smaller bars representing a more precise 
estimation. However, error bars are notoriously difficult to 
interpret. In fact, many researchers do not even know how 
to interpret them adequately (Belia, Fidler, Williams, & 
Cumming, 2005). Since these bars usually define an area 
equivalent to the value of the point estimate +/- one unit of 
the standard error of the measurement, they are equivalent 
to a 68% confidence interval under assumptions of a 
normally distributed variable, which makes them confusing 
to use for research purposes unless, for a strange reason, 
you are using an alpha of 0.32.  

 
What increases even further the challenge of 

adequately interpreting error bars in research papers is that 
they do not systematically represent the standard error of 
the estimate. They can also represent the standard deviation 
or the limits of a traditional confidence interval (e.g., a 95% 
CI). For this reason, error bars are occasionally called 
standard error bars (SE bars), standard deviation bars (SD 
bars) or confidence interval bars (CI bars) depending on the 
situation. In fact, one should always specify clearly (e.g., in 
a note under the graphic) the specific unit represented by 
these bars.  

 
When using confidence intervals, CI bars are often 

used in graphic representations. These bars are clearly more 
useful than SE bars because they allow us to know, simply 
by looking at the graph, the range of probable values for a 
parameter, whether or not the value is statistically different 
from zero (by verifying if zero is included or not between 
the two limits) and to compare the probable values of two 
parameters (e.g., the pre- and post-treatment levels of 
depression in a clinical trial).  

 
One of the ways these CI bars are often used is to 

test whether or not two values are statistically different. 
According to the basic logic, the two values are statistically 
different if and only if they do not overlap. This logic 
allows to visually evaluate the statistical significance of 
group differences directly. However, this intuitive 
procedure is flawed and can easily mislead the user. It is 
indeed true that if two confidence intervals do not overlap 
(i.e., they share none of their probable values), the 
difference between the two parameters will be statistically 
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significant. However, a group difference can be statistically 
significant event when the two confidence intervals 
partially overlap. This might seem counter-intuitive but it is 
due to the fact that people mistakenly believe that a 
difference between two confidence intervals is the same as 
the confidence interval of the difference between two 
scores. While confidence intervals of mean scores are 
calculated using the standard error of each mean, group 
differences (and their associated confidence interval) are 
calculated using another standard error called the standard 
error of the difference. This standard error is calculated 
based partly on the standard errors of each group mean but 
it also depends on the degree of dependence between the 
groups (for the specific equations, see Beaulieu-Prévost, 
2006). This subtle difference can certainly be a source of 
confusion for many researchers.  

 
When the purpose of a graphic representation is to 

present group differences or pre- and post-event scores, 
researchers are traditionally given two options. The first 
one is to present the confidence intervals of each parameter 
as stated above. As mentioned, the problem is that these 
confidence intervals are inappropriate for inferential 
purposes and cannot be used to evaluate the statistical 
significance of the difference between two scores. The 
second option is to directly present the difference scores 
and to use the appropriate confidence interval of the 
difference. This second option is clearly more adequate 
than the first one since it represents exactly what is 
intended. However, it does not represent the value of the 
parameters in each group, condition or measurement time 
because only the difference between the two parameters is 
presented. Consequently, an important part of the 
information is lost in the process.  

 
A third option, called inferential confidence 

intervals, was recently developed to keep the best of both 
worlds (Tryon, 2001). Basically, this graphic approach uses 
the format of the first option (i.e., CI bars centered around 
the point estimate of each parameter) but adjusts the width 
of the confidence intervals to exactly represent the 
statistical significance of the difference. Thus, these 
confidence intervals will overlap if and only if the 
difference between the two parameters is statistically 
significant.  

 
These inferential confidence intervals can also be 

used to improve the meaningfulness of difference scores. 
Indeed, some difference scores are quite difficult to 
interpret. A classical example is a difference between two 
correlations. Since a difference between two correlations is 
not a correlation (and not even an easily understandable 
unit), it is hard to know if such a difference can be 
considered big or not. Inferential confidence intervals can 
be used in such a case to transform the units of the 

confidence interval of the difference between two 
correlations into difference in explained variance, a clearly 
more meaningful unit. An example of this procedure used 
in a context of a meta-analysis can be seen in Beaulieu-
Prévost & Zadra (2007). An improvement of Tryon’s 
method has also recently been published (Tryon & Lewis, 
2008).  

There is presently no gold standard for the graphic 
representation of statistical inferences (except for the fact 
that intervals are generally represented as some kind of bars 
around a point estimate) and it is still a debated issue. 
Consequently, two main elements should be used as 
guidelines: (a) make sure that the graphic representation 
exactly represents the inferential statistics that you use and 
(b) clearly indicate in your graph what exactly is 
represented by the bars. To avoid incorrect interpretations 
of the graph, you can also present a written interpretation of 
your graph in your result section, such as “As can be seen in 
Figure 1…”. That way you guide the reader’s interpretation 
and reduce the chances of faulty inferences.  

 
Dealing with complex distributions 
 
As with a NHT approach, the calculations used to 

estimate a confidence interval for a continuous variable are 
traditionally based on the assumption that the variables 
involved are normally distributed. The correspondence 
between the alpha level of the confidence interval and the 
values of its lower and upper limits will thus generally be 
inferred from a Z distribution (based on the normal law), a t 
distribution or another standard statistical distribution. 
However, as researchers quickly learn from experience, 
continuous variables coming from real-life data do not 
behave exactly like theoretical distributions and will even 
often breach the assumption of normality. In these 
situations, the confidence intervals (and their associated 
NHT tests) can be biased because they were based on 
incorrect distributional assumptions.  

 
The first step to deal with potential problems of 

non-normality is to evaluate if some of the tested variables 
have problematic distributions. There are many ways to 
verify for breaches of normality and only the basic ones 
will be covered here but researchers have to know that it is 
an important issue every time statistical inferences are 
done. Most statistical programs offer indicators of skewness 
and kurtosis when asked for descriptive statistics. 
Traditionally, an index of skewness or kurtosis that is more 
than twice its standard error is considered to represent a 
statistically significant breach of normality (two standard 
errors being an approximation of an alpha of 0.05). A visual 
inspection of each distribution is also highly suggested to 
have a clear picture of the observed distributions. If some 
variables are found to be too far from normality, a solution 
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has to be found to insure the validity of the statistical 
inferences.  

The basic solutions used to deal with complex 
distributions will be presented in the following paragraphs.  

 
Data transformation. Data transformation is a 

common way of dealing with problems of normality. It 
basically implies applying a mathematical transformation to 
the data that keeps the original order between the values but 
stretches or compresses the distribution to make it more 
normal. A classical example of such a transformation is the 
construction of confidence intervals for correlations based 
on the Fisher’s Z transformation (for details, see Beaulieu-
Prévost, 2007). Common transformations are the square, 
the radical, the natural log and the exponential function of 
the original value. However, any transformation that keeps 
the order and brings the distribution close enough to 
normality requirements is adequate. A constant might also 
need to be added to each value before the transformation to 
avoid transforming negative values. Confidence intervals 
and statistical tests are then computed with these 
transformed data. To transform the limits and the point 
estimate of the resulting confidence interval into 
meaningful units, each value simply has to be transformed 
back using the inverse transformation (e.g., using a radical 
if the original value was squared) and presented with the 
original scale. The two limits will not be equally close to 
the central value if the original distribution was skewed. 
However, if the confidence interval of a difference is 
calculated with transformed data, a simple inverse 
transformation is not adequate because difference scores do 
not behave exactly like scores. In that case, one way to 
transform the confidence interval into original units is to 
calculate the inferential confidence intervals of the 
difference (see Tryon, 2001), to transform the values of the 
inferential intervals into original units by using the inverse 
transformation (as above) and to recalculate the confidence 
interval of the difference from these inferential confidence 
intervals. The meta-analysis cited in the section about the 
graphic representation of confidence intervals (Beaulieu-
Prévost & Zadra, 2007) presents a detailed example of such 
calculations for scores of difference between correlations. 
A calculator using this approach to build meaningful 
confidence intervals for differences between correlations is 
also available via the journal’s web site (Supplementary 
Notes).  

Some distributions cannot be normalized. For 
example, frequencies or counts of rare events (e.g., number 
of nightmares per week or number of suicide attempts in 
the population) have a very high proportion of zeros and 
will stay skewed independently of the transformation. In 
that case, a more radical transformation can be used, at a 
certain cost. Indeed, such variable can be transformed into a 
proportion by sacrificing a part of the information and 
reducing it to a binary variable. The variable can then be 

treated like any proportion and problems of normality are 
avoided. However, the resulting confidence interval cannot 
be transformed back into original units and this 
transformation often reduces the statistical power of the 
statistical procedure because it reduces the variance of the 
data.  

 
Robust estimators. A second solution to deal with 

problems of normality (and other departures from 
distributional assumptions) is to use statistical procedures 
that are adapted to the situation. Some complex procedures 
like linear regressions can now be estimated with robust 
standard errors. This so-called robust estimator for 
regressions (also called sandwich estimator) was developed 
to allow a certain departure from the basic assumptions in 
the data without biasing the inferences and is implemented 
in some statistical software (e.g., STATA, SAS). Thus, 
confidence intervals can be built with these robust standard 
errors if necessary. Similar robust estimators, based on a 
method developed by Satorra and Bentler (1994), also exist 
for structural equation modeling (SEM). They are available 
in Mplus (MLM and MLR), Lisrel (ML Robust), EQS (ML 
Robust) and AMOS (Robust ML). Since robust procedures 
continue to be improved and adapted to new situations, 
readers interested in using them are advised to at-least read 
the user guide of their software or a similar documentation 
to verify if the robust option offered is adequate with their 
type of data.  

 
Bootstrapping. Bootstrapping is another 

sophisticated way of constructing robust confidence 
intervals. The basic bootstrapping method is a computer-
intensive procedure in which an impressive number of 
artificial samples (sometimes more than 5000) are 
constructed from the original dataset by random sampling 
with replacement. The procedure subsequently produces a 
distribution of the means of the bootstrap samples. A robust 
confidence interval can then be constructed by identifying 
the percentiles in the distribution of bootstrap means. For 
example, a 95% CI can be derived by using the 2.5 and the 
97.5 percentiles. Traditional bootstrapping (also called 
percentile bootstrapping) deals well with problems of 
kurtosis but is less efficient for problems of skewness 
(Efron, 1982). However, newer bootstrap procedures such 
as the bias-corrected accelerated bootstrap (Davidson & 
Hinkley, 1997) can now also deal with problems of 
skewness.  

 
Noncentrality interval estimation. Noncentrality 

interval estimation (Steiger & Fouladi, 1997) is another 
alternative for constructing confidence intervals for 
statistics with complex distributions. The traditional (i.e., 
central) distributions of t, F, and X2 can be considered 
special cases of the noncentral distributions of the same test 
statistics. These noncentral distributions are similar to their 
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central counterpart but include an additional noncentrality 
parameter that indicates the degree of departure from 
centrality of the distribution. However, this type of 
procedure is computer-intensive and still not implemented 
in most statistical software, which makes it a rarely used 
solution for now (see Kline, 2004).  

 
Keeping the status quo. When researchers have 

good reasons not to use the preceding solutions, they 
sometimes calculate the confidence intervals as if the 
distributions of the variables involved were normal. Reason 
occasionally given to act that ways are that the departure 
from normality is not thought to affect the results of the 
statistical inference or that the results are easier to interpret 
if the original scales are used. This option might seem quite 
simple but it should be considered only as a last resort 
because it denies the problem (or at least its consequences) 
instead of offering a solution. If a researcher chooses to do 
so, the problems of non-normality should still be explicitly 
assessed and discussed and the reasons for not treating 
these problems should also be well argued and stated 
explicitly. This will allow the readers to do their own 
assessment of the adequacy of the researcher’s decision. A 
compromise between the status quo and the other solutions 
is to (a) do the analyses both with the original variables and 
with an alternate solution, (b) present the results for the 
analyses with the original variables, (c) verify if the results 
and conclusions stemming from the two analyses are 
equivalent, (d) mention in the article whether the two sets 
of analyses produced equivalent results or not without 
showing the details of the second set of analyses and (e) 
discuss the implications if the two sets of analyses produce 
different results. This way, the results of the analyses will 
satisfy both those who considered that the problems of non-
normality had to be treated and those who thought that a 
standard analysis was adequate. An example of such a 
compromise using both original and transformed data in a 
linear regression can be seen in Beaulieu-Prévost and Zadra 
(2005).  

 
The case of national surveys and complex 

sampling procedures  
 
In most national surveys, the sampling procedures 

are complex and semi-random. Thus, confidence intervals 
directly calculated from them tend to be biased. For such 
surveys, a statistical procedure, called weighting, is used to 
correct the distortions between the sample and the target 
population as best as possible. In a nutshell, weighting 
procedures give a different weight to each individual in the 
sample to represent how many individuals in the population 
are represented by this individual. These population 
weights are based on the specific sampling method used 
and on what is already known of the population because of 
previous national censuses and surveys. Thus, the point 

estimates of weighted confidence intervals from national 
surveys are generally considered representative of their 
target population.  

 
With longitudinal surveys, a weighting variable is 

available for each cycle to compensate for attrition and 
consequently to insure that each cycle stays representative 
of the population originally sampled. In these cases, 
researchers should be careful to use the appropriate weight 
when doing longitudinal analyses. A general guideline 
when choosing the weighting variable is to choose the 
weighting which is the most representative of the sample 
analyzed. For example, in the case of a longitudinal 
analysis in which cases are selected for analysis only when 
they were present in all the cycles, the population weights 
for the last cycle (or final weight) are generally the most 
representative. When funnel weights (i.e., weights for the 
sample of cases that were presents at every cycle) are 
available for the survey, these weights are even more 
representative. However, in a survival analysis in which all 
the cases present at cycle 1 are included at the beginning, 
the population weights for the first cycle are generally more 
appropriate.  

 
Bootstrap weights. To estimate the standard error 

of the confidence intervals for these weighted surveys, a 
special procedure called bootstrap weights has to be used. 
The basic problem is that even when population weights are 
used to calculate confidence intervals (or the statistical 
significance of the estimates), the calculated standard error 
tends to have a systematic downward bias, i.e., it is 
generally smaller than it should be. This phenomenon is 
called the design effect. Furthermore, there is actually no 
known formula that can adequately estimate standard errors 
with these complex sampling designs. Bootstrap weights 
offer an empirical solution to this problem by estimating the 
error of the estimate from the variance in the estimates 
produced from a series of bootstrap samples (e.g., 500 
bootstrap samples) taken from the original sample. 
Although the procedure used to create bootstrap weights is 
beyond the scope of this article, it is rarely necessary to 
create bootstrap weights because they are generally pre-
calculated and available for national surveys requiring 
them.  

The specific syntax used to produce a weighted 
confidence interval with bootstrap weights depends both on 
the type of analysis done and on the statistical software 
used. But even though the specific details of the syntax 
vary, the general procedure is generally as follow: (a) The 
same syntax is generally used as for an equivalent 
unweighted analysis except that it must be mentioned that a 
population weight and bootstrap weights will be used and 
(b) the population weight and the series of bootstrap 
weights have to be identified. Bootstrap weights are not 
implemented in every statistical software and are not 
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available for every type of statistical procedure. For 
example, STATA can handle bootstrap weights for many 
types of analyses, especially with the svyset (survey set) 
protocol, which enables it to specify the characteristics of a 
survey and apply the required procedures (e.g., bootstrap 
weights) to every subsequent analysis done with that 
survey. SAS can also handle bootstrap weights for many 
statistical procedures. However, bootstrap weights are still 
not implemented for some types of analyses such as 
structural equation modeling. In these cases, population 
weights can still be used to calculate the point estimates but 
an alternative approach has to be taken to calculate the 
standard error of the estimates.  

 
Alternatives to bootstrap weights. Since bootstrap 

weights cannot always be implemented to take the design 
effect of a survey into account, the documentation provided 
with national surveys occasionally comes with estimations 
of the average size of the design effect for that survey that 
can be used as the best alternative to bootstrap weights. 
These estimations are often produced for different sub-
populations (e.g., different regions) and can be used as a 
general estimation of the amount that should be multiplied 
to the calculated variation of error of the estimate to 
approximate the “real” variation of error for the population. 
The exact calculations needed to use these approximations 
of the design effect will not be detailed because they can be 
specific to the survey. However, researchers should know 
that when approximate values are provided for the design 
effect, the procedure required to calculate standard errors 
from these values are also specified in the documentation.  

 
If neither bootstrap weights nor approximate 

values for the design effect are available for a survey using 
a complex sampling procedure, a last resort alternative is to 
use a smaller alpha to approximately compensate for the 
design effect. Since this method is highly approximate there 
is no specific formula available to decide which value to 
use and the size of the reduction of the alpha is simply 
based on a judgment call. Researchers facing such a 
situation should consult published studies using the same 
survey to know if specific guidelines are offered. Basic 
suggestions can be to divide the alpha level by two (e.g., 
from 0.05 to 0.025) or to use the next traditional alpha level 
(e.g., from 0.05 to 0.01) but these choices are highly 
subjective and should ultimately be based on risk 
management: The first option produces more liberal 
estimates than the second but both options are blind guesses 
since the size of the design effect unknown in these cases.  

 
Other uses for the interval logic: The broad 

family of interval statistics 
 
Although confidence intervals are the most well 

known types of interval statistics, other types of intervals 

can be quite useful to researchers. This section proposes a 
brief description of some of the most useful of them. 
Readers should also know that, because of their theoretical 
and methodological similarities with confidence intervals, 
most of the topics discussed in this articles (e.g., graphic 
representation, solutions for problems of normality,…) can 
also be applied to these interval statistics with little or no 
modifications.  

 
Empirical intervals. The simplest variants of 

confidence intervals are sometimes called empirical 
intervals. These intervals are mainly relevant for continuous 
variables and are simply expected to cover a proportion of 
the observations from the sample equivalent to a pre-
established level of coverage. These intervals are calculated 
using the same equation as for confidence intervals except 
that the standard deviation of the sample is used instead of 
its standard error. To decide the appropriate critical value to 
use, the level of coverage is simply treated as a confidence 
level. By using a rule of thumb, it can thus be considered 
that, for normally distributed variables, empirical intervals 
with limits that are one, two or three standard deviations 
from the mean respectively cover approximately 68%, 95% 
or 99% of the sample. Another simple but extremely 
conservative rule called the Bienaymé-Chebyshev 
inequality states that the proportion of observations 
contained within a distance of k standard deviations of the 
sample mean is at least equal to 100(1-1/k2)%. The 
advantage of this rule is that it can also be applied 
regardless of the shape of the distribution. A last note about 
empirical intervals is that because the sample distribution 
only approximates the population distribution, these 
intervals are intended to cover a proportion of the sample 
distribution but not of the population. Readers interested in 
estimating the latter will want to read about tolerance 
intervals two sections below.  

 
Prediction intervals. These intervals represent, 

with a certain confidence level, the probable range in which 
a future observation will fall, i.e., the distribution of 
individual future observations. The main difference with 
confidence intervals is that prediction intervals estimates 
possible scores at the individual level while the former 
estimates parameters at the population level. Another 
characteristic is that while the width of confidence intervals 
becomes closer to zero as sample size increases, the width 
of prediction intervals becomes closer to a fixed value as 
the sample size increases. From a mathematical point of 
view, prediction intervals are quite similar to confidence 
intervals and their basic model is:  
 

  PI = ) µ ± tc * ) σ p                                           (2) 
where the prediction interval (PI) is constructed by adding 
and subtracting to the predicted mean (  

) µ ), the product of 
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critical t value of the corresponding alpha and the estimated 
standard deviation of the predicted scores (  

) σ p ). 
Since prediction intervals take into account both 

the measurement error of the population parameter (i.e., the 
standard error) and the random variations of individual 
scores around that parameter, the general model to calculate 
the standard deviation of the predicted scores is: 

  
) σ p = ) σ 2 + ) σ f

2                                            (3) 

where   
) σ 2 is the residual variance and 

  
) σ f

2  is the standard 
error of the model. Due to the usefulness of prediction 
intervals in research, the details of their calculation are 
presented in the following paragraphs. To construct a 
prediction interval for a sample of scores, the formula can 
be reduced to: 

PI = X ± tc * Sx 1+ 1
n                             (4) 

where X is the mean score, Sx is the standard deviation and 
n is the sample size. Prediction intervals are also frequently 
done to for a linear regression to assess the probable range 
of the scores for the outcome. In that case, the basic 
formula takes the following form: 

 
 

(5)  
 
 
where b0 is the intercept, b1 is the slope of x, xi is the value 
of x for which the predicted outcome is assessed, MSres is 
the mean square of the residuals and SSx is the sum of 
squares of x. The required information can generally be 
found in the regression’s output for most statistical 
software. 
 

Tolerance intervals. These intervals are expected 
to cover a fixed proportion of the population with a stated 
confidence. Thus, tolerance intervals are defined both by 
their level of confidence (as for confidence intervals) and 
by a level of coverage corresponding to the proportion of 
the population that should be included in the interval. For 
example, a 95% tolerance interval for 80% of the 
population implies that the interval includes at least 80% of 
the population with a confidence level of 95%. As for 
prediction intervals, the width of tolerance intervals 
becomes closer to a fixed value (related to the desired 
coverage) as the sample size increases.  

 
If the population distribution parameters are 

known (which is rarely the case), the confidence level is 
automatically 100% (i.e., there is absolutely no 
measurement error) and tolerance intervals can be 
constructed as empirical intervals. However, in the usual 
case in which the population parameters are estimated from 
a sample distribution, the calculations become more 

complex because they have to take into account both the 
level of coverage required and the level of confidence 
desired. A good introduction for readers interested to know 
more about tolerance intervals is the e-Handbook of 
Statistical Methods (NIST/SEMATECH, 2009) available 
on the internet.  

 
Confidence bands. While confidence intervals 

represent the measurement error for the estimation of a 
single numerical value, confidence bands represent the 
measurement error for the estimation of a curve or a 
function. A common use for them is to graphically 
represent the error for a linear regression. Two types of 
confidence bands should be distinguished: (a) Pointwise 
confidence bands represent, for each point of X taken 
separately, the value of the confidence interval of the 
function at that specific point, while (b) simultaneous 
confidence intervals are wider and are intended to cover an 
area including all the parametric values of the function with 
a certain degree of confidence. Pointwise and simultaneous 
prediction bands can also be calculated for curves and their 
relation to confidence bands is equivalent to the relation 
between prediction intervals and confidence intervals. For 
example, equation 5 can be used to create a pointwise 
confidence interval for a regression by considering x as a 
variable instead of a fixed value. 

 
Since confidence and prediction bands require 

complex calculations, are less frequently used and cannot 
be summarized by a finite set of numerical values, they are 
less often implemented in statistical software. However, 
they can occasionally be found in the options of statistical 
analyses such as linear regression or in the options of 
scatter plots or other related graphs. Users should still 
verify if the intervals calculated by the software are 
pointwise or simultaneous. When the required option is not 
available, researchers will have to rely on their own wit and 
research skills to find the specific formulae relevant to their 
problem.  
  

Credible intervals: The subjective approach to 
confidence intervals 

 
As mentioned in the first section of the article, 

confidence intervals are traditionally based on a frequentist 
approach to probability and are used to produce inferences 
about objective probabilities, i.e., the relative frequency of 
an event on the long run. This approach has the advantage 
of producing inferences about the so-called “objective” 
properties of a population. However, this approach also 
faces the problem of being relatively non-informative when 
one wants to speculate about the probabilities that the 
parameter is included or not in a specific confidence 
interval. From a frequentist point of view, confidence 
intervals make sense mainly on the long run but can 
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exclusively be interpreted as an abstract representation of 
sampling error for a specific confidence interval.  

 
The main problem with the frequentist approach to 

statistical inference is that it avoids answering the main 
question of interest of most researchers. Indeed, researchers 
and decision makers are often more interested to know the 
probability that a specific confidence interval includes the 
related parameter than to measure the sampling error of 
their study. What they crave for is the probability from a 
subjective point of view or, more simply, a reasonable 
estimation of the odds of being correct if they conclude that 
the parameter is included in a specific confidence interval. 
Using that definition, probability takes place in the eye of 
the beholder, not in the empirical world. It is an assessment 
of the uncertainty of a statement based on what is known 
about the situation. In fact, although traditional confidence 
intervals are not based on a subjective approach, subjective 
interpretations are quite appealing and intuitive to the 
human mind. Indeed, traditional confidence intervals are 
often wrongly interpreted in a subjective way in published 
articles. Expressions such as “The statistical significance of 
the tests suggests that the results were not due to chance” 
or “The test shows that the difference is probably present in 
the population” are basic examples of such a faulty 
subjective interpretation of a frequentist confidence interval 
or test of statistical significance. For more details on the 
issue, readers are referred to the first paper of the series 
(Beaulieu-Prévost, 2007). These faulty interpretations of 
the results of statistical tests are in fact extremely common 
among researchers (Lecoutre, Poitevineau & Lecoutre, 
2003). For example, a survey of academic psychologists 
showed that only 11% of them were able to adequately 
interpret the results of tests of statistical significance 
(Oakes, 1986).  

 
Since the problem basically comes from the fact 

that researchers estimate objective probabilities but are 
generally interested by subjective probabilities, the easiest 
solution might simply be to provide them with the proper 
conceptual tools needed to adequately estimate these 
subjective probabilities. And a well-developed subjective 
approach to probability does indeed exist. This subjective 
approach to probability is generally called the Bayesian 
approach because it is mathematically based on Bayes’ 
theorem. Instead of simply aiming at assessing the relative 
frequency of an event, this approach directly aims at 
assessing the confidence, or degree of belief, that one can 
put in an estimation and in the range of probable values for 
a parameter, given the evidence. In a way, using a 
subjective approach to probabilities is essentially trying to 
incorporate the subjective component of probabilities to the 
estimation instead of avoiding it. If you are interested in 
subjective probabilities, the most appropriate thing to do is 
probably to acknowledge it and integrate a formal approach 

to subjective probabilities to your statistical inferences 
instead of simply subjectively interpreting your frequentist 
confidence intervals in an intuitive way.  

 
As mentioned, Bayesian confidence intervals can 

be made for which it can be reasonably assumed that there 
is [1-alpha] chances that the parameter is included. To 
differentiate them from traditional confidence intervals, 
these Bayesian intervals are called credible intervals. The 
basic mechanics of credible intervals is similar to that of 
confidence intervals. However, credible intervals take into 
account the fact that the degree of belief that can be put in 
an estimation depends on both the results of the experiment 
itself (like for traditional confidence intervals) but also on 
the prior knowledge that one already has about that 
parameter.  

 
To calculate a credible interval, one has first to 

quantify the prior knowledge or expectations about the 
parameter, called the prior probability. When estimating a 
continuous parameter, this knowledge is formalized as a 
prior distribution with a point estimate representing the 
most probable value of the parameter, given the actual 
evidence, and a standard error representing the precision 
provided by the evidence, much like the distributions on 
which traditional confidence intervals are based. More 
precisely, the precision of the estimation is measured by the 
inverse of the conditional variance, i.e., by the inverse of 
the squared standard error. As new results (e.g., studies) 
provide estimations of the parameter, these estimates are 
weighted by their precision and combined with the prior 
distribution to create an updated distribution (called 
posterior distribution) representing the new state of 
knowledge. This process can continually be updated with 
additional results coming from subsequent studies to 
continually represent the most up to date state of 
knowledge. As the number and the precision of the results 
included in the analysis increases, the impact of the prior 
distribution on the posterior distribution decreases. In other 
words, the more you accumulate new information about a 
parameter, the less your prior expectations have an impact 
on your actual estimation of that parameter.  

 
The posterior distribution resulting from the 

process can be understood as the distribution of the 
probable values of the parameter, according to the present 
state of knowledge, and it can directly be used to calculate a 
Bayesian credible interval, using its point estimate and 
standard error as for traditional confidence intervals. This 
process is extremely similar to the basic meta-analytic 
procedure, in which the resulting confidence interval is 
calculated by combining the results of all the previous 
relevant studies and by weighting each result by its 
precision (i.e., by the inverse of its squared standard error). 
The main difference between a traditional meta-analytic 
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confidence interval and a basic Bayesian credible interval 
in terms of calculations is that the latter takes into account 
prior knowledge about the parameter while the former does 
not.  

 
The preceding explanations only provides a 

summary of the basic elements of Bayesian estimations and 
many aspects, such as the adequate way to define the prior 
distribution, could certainly be covered in more details. Due 
to space constraints, these aspects will not be covered in the 
present article and interested readers are referred to Kline 
(2004) for an introduction to the basic concepts of Bayesian 
estimations and a comparison with the meta-analytical 
approach.  

 
Bridging the gap with confidence intervals. There 

is a final aspect of credible intervals that is highly relevant 
to the subject treated in this article and it is worth 
discussing. Although credible intervals and confidence 
intervals can produce quite different intervals (especially 
depending on the prior distribution on which the credible 
interval is based), there is one situation in which a Bayesian 
credible interval coincides exactly with its frequentist 
counterpart. The interest of that situation is that it can be 
used to understand more clearly in which context and to 
what extent a subjective interpretation can be given to 
traditional confidence intervals. 

 
A credible interval will coincide exactly with a 

traditional confidence interval when the credible interval is 
based on an agnostic (i.e., a noninformative) prior and takes 
into account the results of exclusively one study. An 
agnostic prior is a judgment that one has no useful prior 
knowledge about the parameter’s probable value and it is 
represented by a prior distribution with a precision 
asymptotically close to zero. In that situation, the prior 
distribution loses its impact on the posterior distribution 
and the latter becomes completely defined by the results of 
the study. It is rare that a researcher has absolutely no prior 
knowledge about the probable value of a parameter. 
However, this situation can help us understand the value of 
the results represented by a traditional confidence interval. 
It can thus be said that when only the experiment’s data are 
taken into account to estimate a parameter (i.e., when an 
agnostic prior is postulated), a traditional confidence 
interval represents an interval for which it is reasonable to 
assume that there is [1-alpha] chances that the parameter is 
included. By extension, the distribution related to the 
confidence interval can be understood, from a Bayesian 
point of view, as the distribution of the probable values of 
the parameter according to an agnostic prior. This 
represents the extent to which a subjective interpretation 
can be done of a traditional confidence interval. This type 
of interpretation can also be extended to the other types of 

interval statistics presented previously by using the same 
principles.  

 
CONCLUSION 

 
This paper is the third in a series written to 

facilitate the transition from an approach based on 
significance testing to one based on confidence intervals. 
As could be seen, the parallels between significance testing 
and confidence intervals are numerous and a transition from 
one to the other can be done smoothly. In addition, an 
approach based on confidence intervals reveals new ways 
to answer research questions and improves the usefulness 
of the results.  

 
The specific purpose of this paper was to provide 

guidelines, advices and tricks for researchers in the social 
sciences who want to (a) develop and improve their 
understanding of confidence intervals and (b) be able to use 
an approach based on confidence intervals with real-life 
data. However, this paper should not be considered as the 
final reference but as a starting point for those deciding to 
adopt an approach to statistical inference based on 
confidence intervals. Every statistical inference is an 
estimation process and estimation methods are continually 
improving. As such, some of the methods presented herein 
might be replaced by more efficient alternatives in the near 
future. Improving one’s skills in statistical inference is thus 
best viewed as a continual process and an integral part of a 
researcher’s activities. It is hoped that this paper can help 
facilitate this learning process.  
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