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ABSTRACT 
 

Outliers are observations or measures that are suspicious because they are much smaller or much larger than the 
vast majority of the observations. These observations are problematic because they may not be caused by the mental process 
under scrutiny or may not reflect the ability under examination. The problem is that a few outliers is sometimes enough to 
distort the group results (by altering the mean performance, by increasing variability, etc.). In this paper, various techniques 
aimed at detecting potential outliers are reviewed. These techniques are subdivided into two classes, the ones regarding 
univariate data and those addressing multivariate data. Within these two classes, we consider the cases where the population 
distribution is known to be normal, the population is not normal but known, or the population is unknown. 
Recommendations will be put forward in each case. 
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RESUMEN 
 

Los valores extremos son observaciones o medidas que son sospechosas en tanto que son mucho menores o mucho 
mayores que el resto de las observaciones. Estas observaciones son problemáticas en tanto que puede que no sean causadas 
por los procesos mentales que están siendo estudiados o puede que no reflejen la habilidad que se está estudiando. El 
problema es que unas pocas observaciones extremas son suficientes para distorsionar los resultados (alterando el desempeño 
medio, incrementando la variabilidad, etc.). En este artículo se revisan varias técnicas diseñadas para detectar observaciones 
extremas. Estas técnicas se subdividen en dos clases, aquellas relacionadas con datos univariados y aquellas relacionadas 
con datos multivariados. Dentro de estas dos clases, se consideran casos en que la distribución de la población es asumida 
como normal, casos en que la distribución es normal pero no conocida, o casos en que la población es desconocida. Para 
cada escenario se proponen algunas recomendaciones. 

.  
Palabras clave: intervalos de confianza, estadística de los intervalos, guías, representación gráfica, encuestas nacionales, 
aproximación Bayesiana. 
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INTRODUCTION 
 
Studying human behavior is a difficult enterprise 

for many reasons. One such reason is that when an 
individual is accomplishing a given task (ranging from an 
attentional task to a paper-and-pencil questionnaire), there 
are processes other than those of interest occurring at the 
same time. These processes can be physiological, 
neurological and/or cognitive. Most of the time, they 
operate in the background and have no influence on the 
measures collected. Other times, they may contaminate the 
results and occasionally, they may even substitute to the 
processes being studied. An example of physiological 
process generally operating in the background is blood 
circulation. fMRI studies which examine the BOLD 
response will be influenced by blood circulation which is 
itself influenced by numerous factors, but these influences 
are assumed to cancel across trials. Other examples, such as 
lapses of attention, either caused by fatigue or 
mentalizations not related to the task, contaminate the 
results as they may increase the time to perform the task or 
reduce the accuracy of the response. Lapses do not cancel 
across trials as they only increase processing times. Finally, 
fast guesses, either caused by incorrect understanding of the 
goal or lack of motivation, is an example of process that 
substitutes to the processes that should normally operate. 

 
All those undesired behaviors nevertheless 

produce measurable responses that may happen to be 
correct by chance. Hence, a spurious behavior can go 
undetected because the response obtained from it resembles 
an appropriate response. Other responses however may 
(and should) attract attention due to their unusual aspect. 
Those last ones are denoted outliers in the following. When 
the measure is one-dimensional (e.g. IQ or response time), 
outlier responses can be suspiciously small or suspiciously 
large. Hence, a datum lying to the left (right) of the scale is 
potentially problematic and called a low-outliers (a high-
outliers). However, the problematic responses are more 
likely to be entangled around appropriate responses, so that 
detecting them is impossible from a purely data-driven 
perspective. Therefore, we have to either accept their 
existence, reduce the impact they may have on our 
inferences or choose experimental settings that minimize 
their occurrences. Flawed designs can never be corrected by 
any given analysis. Therefore much attention must be spent 
in the design phase before it is too late and a lot of outlier 
responses are collected. 

 
Statistical inferences are often based on tests of 

means in which the standard deviation is used as a measure 
of the normal fluctuation of the examined processes. Hence, 
for such parametric tests, a few high-outliers (or a few low-
outliers) can greatly influence the mean response. As a 
result, the compared means have more chances to be 
dissimilar if the outliers are not uniformly spread across the 

various conditions, increasing the likelihood of a Type-I 
error. Similarly, the presence of both low-outliers and high-
outliers will increase the standard deviation, reducing the 
chances of detecting a significant difference and thus 
increasing the likelihood of a Type-II error. 

 
The influence of outliers is more important if the 

sample size is small. It is also more important if the statistic 
examined is less robust. The sample mean is a moderately 
robust estimate of the population central tendency so that 
one outlier among a large sample will have a limited impact 
(Daszykowksi, Kaczmarek, Vander Heyden, & Walczak, 
2007). A more robust estimate of the population central 
tendency is the median. A few outliers will have a limited 
impact on this statistic. However, other statistics are much 
less robust. For example, if a researcher compares standard 
deviations or coefficients of variation across conditions, the 
measures will be considerably more influenced by the 
presence of outliers than the mean. In this case, the quartile 
deviation may be a better statistic. The skewness of a 
distribution is a highly unstable statistic; just one outlier in 
a fairly large sample can distort this statistic completely; the 
Pearson-2 measure of skewness may be preferable in this 
case. For a discussion of robust estimates, see Tukey 
(1977), Mosteller and Tukey (1977) or Ratcliff (1993). 

 
One difficulty with treatments of outliers is that 

there is no unanimously accepted theoretical framework for 
the treatment of outliers. Various fields have developed 
various approaches and rare are the approaches that can be 
formulated with the concepts of another approach. The 
reader’s first glance at the literature on this theme is awed 
by the large number and discordance of the concepts put 
forth by these techniques. Indeed, very few papers make 
explicit the context in which these techniques have been 
developed. In the present review, we will distinguish 
univariate outliers from multivariate outliers.  

 
Within the univariate cases, we will examine both 

the situation where the population of scores is assumed to 
be normally distributed and the situation where the 
population of scores is of an unknown distribution with a 
notable asymmetry (skewness). The situation where the 
population is from an unknown but symmetrical 
distribution has never been examined, but the techniques 
developed for the normally distributed population 
presumably apply; the situation where the population is not 
normal but has a known distribution will be discussed at the 
end of the review, as the univariate and multivariate cases 
are handled in the same manner in this situation. 

 
Within the multivariate cases, we will consider the 

situation where the population is assumed to have a 
multinormal distribution. Within this situation, we 
distinguished cases where there is one dependant variable 
and many predictors from the cases where there are many 
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dependant variables. We will end this review with a more 
general consideration: Should outliers be examined within 
subject? within conditions?  

 
Throughout this review, we have selected from the 

vast array of possible techniques the ones that are the most 
agreed upon or the more promising. Some of these 
techniques are rather elaborate. In these cases, the 
algorithm is outlined without much detail, concentrating on 
the strengths and limitations of the techniques. 
Nevertheless, it is our feeling that the definite techniques 
have not been found .This review should therefore simply 
be considered as a milestone in the continued research for 
dealing properly with outliers. We hope that it will 
encourage readers to be aware of the problems caused by 
outliers and to look for appropriate remedies. As G. 
Thompson (2006, p. 346) wrote: “In a field in which all 
statistically significant effects […] are considered 
interpretable, it is clear that a naïve approach to outlier 
screening can be costly.” 

 
1. The univariate domain 
 
1.1- The data are assumed to follow a normal 

distribution 
 
When the data follow a normal distribution, the 

most salient characteristic of the data is the near symmetry. 
If outliers are equally likely to be low-outliers or high-
outliers, their influence on the mean may be minimal 
because they counteract each other. In this case, a Type-II 
error may be the most likely consequence of the presence of 
outliers, a consequence that can be alleviated if the sample 
size can be increased markedly.  

 
The most common method to detect outliers in this 

condition is to use a criterion based on z-scores. For 
example, by excluding all observations that are four 
standard deviations away from the sample mean, we would 
eliminate 3 valid observations every 100,000 observations. 
Of course, this is true only if the presence of outlier is a 
random process. Hence, if an observation is indeed 
eliminated from a much smaller sample, it was more 
probably an outlier than a valid observation (this reasoning 
will be used more formally in the last section). In the case 
of biases induced by the experiment (e.g. lack of 
motivation, fatigue), the number of outliers can be quite 
high and they should be expected even in small samples. 

 
The criterion to choose (e.g. 4 standard deviations 

away from the mean) is a matter of debate. A good starting 
point is to first set a decision criterion  which will indicate 
how severe we wish to be before tagging an observation as 
being an outlier (and divide  by two as outliers can be at 
either end of the distribution). This decision criterion 

should be small so that the decision stays very conservative 
(i.e. it has a bias toward keeping the data). To that end, 
some authors suggest to use a Bonferroni correction based 
on the sample size, , so that the decision criterion is 

. The level 0.01 is often chosen. Table 1 lists 
some critical Z as a function of the decision criterion and 
whether a Bonferroni correction was used (and the sample 
size in this eventuality). 

 
Table 1. z-score beyond which a datum (sign ignored) is 

considered an outlier as a function of the decision criterion 
and whether a Bonferroni correction is used or not. 

 
 

 
 
Although such criteria are often used, they are 

problematic in the case of small samples sizes. Consider for 
example a sample of size 3. Whatever the data are, the z 
scores will never exceed (ignoring the sign) the value 1.16 
(try using two IQ of 100 and one IQ of one billion!). Hence, 
with a sample size of 3, even with a liberal decision 
criterion of 10%, no datum will ever be extreme enough to 
be an outlier. Shiffler (1988) has computed the maximum 
possible z-core that can be obtained as a function of sample 
size. In his Table 1, we see that for a sample of size 10, no z 
scores will ever be larger than 2.8, so that using a decision 
criterion of 5% and a Bonferroni correction, no outlier will 
ever be detected. Hence, a screening performed only on the 
basis of z-scores will lead to an erroneous confidence that 
all the data are legitimate when sample sizes are small. This 
is a reminder that visual inspection should always be 
performed. 

 
1.2- The data are from an unknown but 

asymmetrical population 
 
Measures that have an asymmetric distribution 

include frequencies of uncommon events (e.g. number of 
nightmares in a week) and measures that have a definite 
lower bound but no upper bound (e. g. salary). However, 
the most commonly studied measure which is definitely not 
symmetrical is the response time to complete a task. 
Numerous studies have verified this fact and it is not 
disputed (Cousineau & Shiffrin, 2004; Rouder, Lu, 
Speckman, Sun & Jiang, 2005; Ratcliff, 1993). In the 
simplest of task, the same-different task (Bamber, 1969), 
response times are typically between 260 ms and 1000 ms 
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with a standard deviation of approximately 120 ms.1 With 
these figures, there remains very little room to place a fast-
guest, low-outlier (fast guess can hardly be faster than 160 
ms); however, a high-outlier caused by, say, a lapse of 
attention, can easily be larger than 1500 ms. The former 
outlier is 2.8 standard deviation below the mean whereas 
the latter is more than 8 standard deviation above the mean! 
As seen with this example, asymmetry is a major concern, 
and it has never been addressed by the techniques created to 
work through response times. 

 
A transformation approach 

 
One approach would be to first make the data 

symmetrical by the use of a non-linear transformation. On 
the transformed data, the outliers could be located using a 
technique taken from the normal case described above. 
Presumably with such an approach, outliers would also be 
more symmetrically away from the central tendency, 
providing an equal chance of locating low- and high-
outliers. However, there is no single technique that makes 
the data symmetrical when they have been contaminated 
with outliers.  

We have explored the three commonly used 
transformations (Log-transform, square-root transform, 
arcsin transform) and have found that the following 
modification of the square root transformation is very apt to 
locate outliers at either side of the distribution for response 
time data: 

 

                      (1)
 

 
in which  denotes the smallest item of the sample X, 
and  denotes the largest. Dividing by the range (the 
largest observations minus the smallest) normalizes the data 
so that they are located between 0 and 1, with the smaller at 
exactly 0 and the largest at exactly 1. This step bounds the 
data into the range [0..1]. The square root then enlarges 
observations that are the smallest, pushing the lower part of 
the distribution towards a more central location. Once this 
transformation is completed, z scores of the transformed 
data can be computed ( ).  
 

With this square root transform, a score of 160 has 
a z-score on y of -5.4 and a score of 1500 has a z-score on y 
of +5.8. Figure 1 shows simulated data that were used and 
the result of the transformation. Despite the asymmetry of 
the raw data, the z-scores of the outliers are reasonably 

                                                   
1 For the purpose of this illustration, we generated simulated data with a 
Weibull distribution and a shape parameter of 2.0, a scale parameter of 250 
and a location parameter of 260. This distribution has a skew of 0.63, not 
an extreme skew but visible on a frequency plot. 

symmetrical. This approach can therefore locate outliers at 
both ends of the distribution with equal chance. 

 
The square-root transform works well for response 

times and for other measures whose population distribution 
is moderately and positively skewed. It will not work in 
cases of extreme asymmetry (e.g. salary). However, for 
such population, it is merely impossible to detect high 
outliers since any extremely large measure is always 
possible in such populations. 

 
Figure 1: Examples of simulated data resembling response 
times. Left: raw data with two outliers on either side of the 

distribution; right: same data after the square root 
transformation of Eq. (1) was used. 

 
 

 
 
Recursive and non-recursive approaches using adaptive 
criterion 

 
Van Selst and Jolicoeur (1994) have taken a 

different approach. Their argument starts with the 
observation that low-outliers may have a smaller impact on 
the mean. Hence, they were primarily interested in locating 
high-outliers. However, as noted by Ulrich and Miller 
(1994), removing valid data from only the upper end of the 
distribution will reduce the mean relative to the true 
population mean. Hence, as the sample size is larger, the 
odds that valid data lay above a criteria increase, data that 
will be removed, resulting in a smaller observed mean. 
Such procedure applied to an asymmetrical distribution 
therefore introduces a bias: the larger the sample size, the 
smaller the observed mean will be after the procedure is 
applied. Since it is not always possible to have conditions 
with equal number of observation (either for 
methodological reasons or because erroneous responses are 
removed from the analyses), the potentially significant 
effects could be the result of the manipulation or the result 
of the unequal number of observations. 

 
In order to avoid such bias for reaction time data, 

they proposed to use a criterion for exclusion based on the 
sample size. In a series of Monte Carlo simulation, they 
have estimated what would be the appropriate criterion for 
various sample sizes. These values are reproduced in Table 
2. The procedure was automatized by G. Thompson (2006) 
within SPSS. These adaptive criterion were labeled 
“moving criterion” by Van Selst and Jolicoeur (1994). The 
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difficulty with this table is that it is not possible to alter the 
decision criterion. These decision criterions were chosen to 
mimic the bias that would occur with a criterion of 2.5 
applied to a sample of size 100. This represents roughly a 
criterion decision of 1 %. 

 
The authors also presented a recursive version of 

the above technique in which the z-scores are computed by 
first excluding the most extreme datum. The process is 
repeated after each datum is removed until no more 
responses are removed. The rational for that recursive 
procedure is that high-outliers increase the standard 
deviation, which results in unrealistically small z-scores. 
Accompanying this method is a new set of criterion adapted 
to the recursive method (also obtained from Monte Carlo 
simulations). These criteria are larger for the reason noted 
above. As pointed by the authors, the adaptive non-
recursive and adaptive recursive methods both avoid 
introducing biases in the resulting mean (means are not 
influenced by the sample size). However, it is fairly easy to 
show that both methods are equivalent. Hence, the non-
recursive is to be preferred over the recursive. 

 
Table 2. z-score criterion for excluding an observation as 

being an outlier, ignoring the sign (from Van Selst and 
Jolicoeur, 1994). 

 

 

 
With this square root transform, a score of 160 has 

a z-score on y of -5.4 and a score of 1500 has a z-score on y 
of +5.8. Figure 1 shows the simulated data that were used 
and the result of the transformation. Despite the asymmetry 
of the raw data, the z-scores of the outliers are reasonably 
symmetrical. This approach can therefore locate outliers at 
both ends of the distribution with equal chance. 

 

The square-root transform works well for response 
times and for other measures whose population distribution 
is moderately and positively skewed. It will not work in 
cases of extreme asymmetry (e.g. salary). However, for 
such population, it is merely impossible to detect high 
outliers since any extremely large measure is always 
possible in such populations. 

 
 

Recursive and non-recursive approaches using adaptive 
criterion 

 
Van Selst and Jolicoeur (1994) have taken a 

different approach. Their argument starts with the 
observation that low-outliers may have a smaller impact on 
the mean. Hence, they were primarily interested in locating 
high-outliers. However, as noted by Ulrich and Miller 
(1994), removing valid data from only the upper end of the 
distribution will reduce the mean relative to the true 
population mean. Hence, as the sample size is larger, the 
odds that valid data lay above a criteria increase, data that 
will be removed, resulting in a smaller observed mean. 
Such procedure applied to an asymmetrical distribution 
therefore introduces a bias: the larger the sample size, the 
smaller the observed mean will be after the procedure is 
applied. Since it is not always possible to have conditions 
with equal number of observation (either for 
methodological reasons or because erroneous responses are 
removed from the analyses), the potential statistically 
significant effects could be the result of the manipulation or 
the result of the unequal number of observations. 

 
In order to avoid such bias for reaction time data, 

they proposed to use a criterion for exclusion based on the 
sample size. In a series of Monte Carlo simulation, they 
have estimated what would be the appropriate criterion for 
various sample sizes. These values are reproduced in Table 
2. The procedure was automatized by G. Thompson (2006) 
within SPSS. These adaptive criterion were labeled 
“moving criterion” by Van Selst and Jolicoeur (1994). The 
difficulty with this table is that it is not possible to alter the 
decision criterion. These decision criterions were chosen to 
mimic the bias that would occur with a criterion of 2.5 
applied to a sample of size 100. This represents roughly a 
criterion decision of 1 %. 

 
2. The multivariate domain 
 
To simplify the presentation, the multivariate 

domain will be covered through the general linear model. 
Therefore, focus will be put on the multiple regression case 
(ANOVA being a special case) in the first part, then on 
mutivariate multiple regressions (including canonical 
correlation, discriminant analysis and MANOVA) in the 
last part. 
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2.1- Multiple regression 
 
This section deals with multiple regressions in 

which one dependant variable Y is predicted by a set of 
predictor variables X. The standard model assumes 
normality of the scores as well as a linear relationship 
between the predictors. 

 
In multiple regressions, three types of outliers can 

be encountered (Figure 2). An outlier can be an extreme 
case with respect to the independent variable(s) X (case 1), 
the dependant variable Y (case 2), or both (case 3). Not all 
outliers will have an impact on the regression line. In the 
case where there is only one predictor, detecting an outlier 
is straightforward using a scatterplot (e.g. Figure 2).  

 
However, such representation is harder for two 

predictors and impossible for three and more. In addition, a 
univariate outlier may not be extreme in the context of 
multiple regressions, and a multivariate outlier may not be 
detectable in a two-variable or a one-variable analysis. 
First, the focus will be given to identifying cases with 
outlying Y observation. These methods apply for example 
to ANOVA analyses (in which case Xs are only used for 
identifying the conditions). Second, we will see techniques 
that identify X outliers. To assess if a given score is an 
outlier, the procedures below proceed by removing it from 
the data set and see how a target estimate changes. Finally, 
the influence of those outliers will be assessed to determine 
whether they should be removed or not. 

 
Figure 2. Examples of various outliers found in regression 
analysis. Case 1 is an outlier with respect to X. Case 2 is an 
outlier with respect to Y. Case 3 is an outlier with respect 
to X and Y. All three outliers are at the same distance from 
the population mean (45 units), which corresponds to three 
population standard deviations. 
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Identifying Outlying Y observations 
 
The idea is to perform outlier detection based on 

the examination of the residuals. Residuals (e) can be 
obtain as a vector of size n, the number of data, with 

YHIe )( −=                (2) 
where I represents the identity matrix (of size n × n) and H 
the hat matrix obtained using 

T1T )( XXXXH −= .      (3) 
in which X is a n × p matrix containing the p predictors for 
the n observations. 
 

In order to test for outliers, remove a particular 
data and "look" for the effect of deletion on the regression 
line. If the predicted Y deteriorates a lot, then we can affirm 
that the deleted data was an outlier. On the other hand, if 
following the deletion of a given datum, the residual has not 
changed significantly, then the data is not an outlier with 
respect to Y. A new regression line is not required for each 
deleted data under investigation because the deleted 
residuals can be obtained from e and H. It is further 
possible to studentize the deleted residual with the 
following 

 

2)1(
1

iii
ii ehSSE

pnet
−−

−−
= .        (4) 

 
where n represents the number of observations, p is the 
number of predictors, SSE, a scalar, is the sum of square of 
the error (SSE = eTe), hii is the ith diagonal element of the 
hat matrix and, ei, is the ith residual (Neter and Wasserman, 
1974). Since the deleted residual follows the Student t 
distribution, we can use a critical value based on Bonferroni 
correction .  
 
Identifying Outlying X observations 

 
Going back to the hat matrix H, from Equation 3, 

we see that the matrix is determined using the predictors X 
alone. Therefore, the hat matrix is useful to indicate 
whether or not a given set of predictor includes outliers. 
More precisely, hii measures the role of the X values that 

will influence the fitted value iŶ . In this context, the 
diagonal of hii is called the leverage. As a rule of thumb, a 
leverage value hii will be considered large if it is more than 
twice as large as the mean leverage value ( nph /= ). 
This rule applies if the number of observation is large 
relative to the number of predictors (Kutner, Nachtseim, 
Neter, & Li, 2004).  
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Once outlying observations have been identified, 
we need to establish if they are influential, in other words, 
if their exclusion will have a significant impact on the fitted 
regression function as a whole.  

 
Identifying Influential Cases  

 
To assess the influence of possible outliers, three 

common tests are used: The DFFITS (Belsley, Kuh, & 
Welsch, 1980), Cook's Distance (Cook, 1977) and the 
DFBETAS (Belsley, Kuh, & Welsch, 1980). The DFFITS 
is useful to measure the influence of a single case i has on 

the fitted value iŶ . It is therefore quite similar to 
identifying outlying Y (two sections above). This measure 
is determined by 

 

2)1(
1

iii
ii ehSSE

pnet
−−

−−
=

             
(5) 

 
where ti represents the studentized deleted residual 
(Equation 4) and hii the leverage value. It is suggested 
(Kutner, Nachtseim, Neter, & Li, 2004) that a case is 
influential if its DFFITS exceeds 1 for small to medium 

data (less than 30 observations) sets and np /2  for large 
one (more than 30 observations).  
 

In contrast to the DFFITS, Cook's distance (Di) 
will consider the influence of a given case i on all the n 
fitted value. This distance is obtained by 

 









−

= 2

2

)1( ii

iii
i h

h
pMSE

eD
          

(6) 

 
where ei represents the residual of the ith datum (Equation 
2) hii, its leverage and MSE is the mean square error, given 
by SSE / (n - p). Therefore, if ei, or hii, or both have high 
values, the Cook's distance will be high. To assess if a 
given Di is influential or not, select a criterion using the 
percentile value of a Fisher Ratio distribution F(p, n-p). If 
the percentile is less than about 20%, the case under 
investigation has little apparent influence on the fitted 
value.  
 

Finally, influence on the regression coefficients 
can be measured using the DFBETAS. Since the 
DFBETAS value is a difference between the estimated 
regression coefficient and the coefficient when the ith case 
has been omitted, its value can be positive or negative. A 
positive value indicates an increase in the estimated 
coefficient, while a negative value indicates a decrease. 
Formally, the DFBETAS is obtained following 
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in which bk is the kth regression coefficient, bk(i) is the same 
coefficient after datum i has been deleted and MSE(i) is the 
mean square error after deletion of datum i. A case will be 
considered influential if the absolute value of DFBETAS 
exceeds 1 for small to medium data sets (less than 30 

observations) and n2  for large data sets (more than 30 
observations). Some authors suggest as rule of thumb the 
value of 2 (Kutner et al., 2005). As a final note, outliers 
might not be influential, a high leverage value might not be 
influential and an influential score might not be an outlier. 
It is therefore recommended to remove only outliers that are 
influential as well. 
 

We tested the above methods using simulated data 
sets generated from a multinormal distribution with mean 
(100, 100), standard deviations of 15 for both variables and 
a population coefficient of correlation of .80. Three outliers 
(presented in Figure 2) were also included in the 
distribution. 

The studentized residual technique identified only 
the case 3 as being an outlier. Both the DFFITS and Cook’s 
recognized this item as influential. The studentized residual 
technique failed to notice case 2, even though it is aimed at 
identifying such type of outliers and therefore should be 
avoided. The leverage method identified case 1 as an 
outlier, but only Cook’s D detected this item as influential. 
Of the methods reviewed here, none could identify case 2 
as an outlier despite its clear symmetry with case 1. 

 
2.2- Nonlinear regression 
 
Until now, only the linear model has been 

considered under the assumption that the processes 
underlying the data were normally distributed. In the case 
of nonlinear regressions, methods for detecting outliers 
generally don’t exist, and when they do, they differ 
markedly from those of linear regressions (e.g. in the case 
of logistic regressions or Poisson regressions; McCullagh 
and Nelder, 1999; Kutner, Nachtseim, Neter, & Li, 2004). 

 
2.3- Mutivariate multiple regression 
 
Multivariate multiple regressions address the cases 

in which there is no predictor variable and q dependant 
variables Y or the more general case with p predictor 
variables and q dependant variables. 

 
If the population is multinormal (a 

multidimensional normal distribution) and the data under 
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study are simple (dummy coding variable as predictors, like 
MANOVA), then the Mahalanobis distance can be used 
(for a review, see Meloun & Militký, 2001). This measure 
is given by  

 

)()( 1T YYSYY −−= −
iiiM .     (8) 

 
where Y is the matrix containing the q measures for the n 
subjects, Y  is the mean across the subjects (a vector of 
size q), and S is the variance-covariance matrix of size q × 
q. A decision criterion can be chosen since this distance 
follows a  distribution with parameter q – 1 (e.g. 1-

/(2n) (q – 1)). This approach is very reliable if there is only 
one outlier or if the outliers are scattered all around the 
legitimate data. 
 

The Mahalanobis distance (M) is related to the 
leverage (Equation 3) since 
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if the Y matrix used to obtain H has one extra column 
dummy coded with 1s. We computed the Mahalanobis 
distance on the items of the data set illustrated in Figure 2. 
The critical value using a Bonferroni correction is given by 

 in which q equals 2 and n, 100 equals 
13.41. The three outliers (cases 1 to 3) have a Mahalanobis 
distance of 13.5, 15.2 and 23.9. They are the only items 
exceeding the critical value. 

 
However, the situation is more complicated when 

the analysis involves continuous multiple dependent and 
independent variables. In those cases, masking effects may 
occur and thus may affect the variance-covariance matrix as 
well as the detection of other outliers in the data sets. Many 
techniques have been proposed for detection of multiple 
outliers of various influential degrees. Each solution has its 
own particular implementation and the details of each 
technique are beyond the scope of this paper. For a review 
see for example Meyer, (2003); Walczak & Massart (1998); 
Wisnowski, Montgomery & Simpson (2001); Daszykowski, 
Kaczmarek, Heyden & Walczak (2006). 

 
3. The case (univariate or multivariate)  

in which the population distribution is known 
 
In the case where the population distribution is 

known, it is possible to adopt a rational approach and 
compute the odds that a datum was sampled from the 
population instead of from the distribution of outliers. 

 
To achieve this, let’s assumes that the outliers are 

uniformly spread out over the whole range of data, that is, 

from the smallest to the largest datum. Let us define the 
following probability function: 
 

                (10) 

                               (11) 
 

in which  denotes the distribution of the population 
assumed known and  denotes the uniform 
distribution over the range extending from the smallest 
observation  to the largest observation in the 
sample . In the case of a uniform distribution, the 
probability of a certain score  is equal to a constant 

. Figure 3 illustrates the two 
distributions. 

 
Figure 3. Two distributions, one representing the 
population distribution , the other representing the 
distribution of spurious observations  
extending over the whole range of observed data (here, we 
assume that the smallest observation  is 160 and the 
largest, , is 1500. The population distribution depicted 
here is a Log-normal distribution. 

 
 

 
 
By computing the ratio  
 

                   
(12) 

 
we get the odds ratio that a certain datum  was sampled 
from the population relative to it being sampled from a 
spurious process. An observation  for which this ratio is 
99 to 1 or higher represents a datum which is 99 times more 
likely to be an outlier than a valid observation. Since a ratio 
of 99 : 1 represents a probability of , it means 
that the decision criterion is 1%. For a decision criterion of 
0.1%, we would look for observations that are 999 times 
more likely to be a spurious response than a valid response. 



International Journal of Psychological Research, 2010. Vol. 3. No. 1. 
ISSN impresa (printed) 2011-2084 
ISSN electrónica (electronic) 2011-2079 

Cousineau D., Chartier, S. (2010). Outliers detection and treatment: a review. 
International Journal of Psychological Research, 3 (1), 58-67. 

 

66  International Journal of Psychological Research 

 

Referring to Figure 3, an observation with a ratio of 999 is a 
datum for which the probability of the outlier distribution is 
999 times smaller that the corresponding probability 
assuming the population distribution. 
 

As an illustration, assuming that the population has 
for distribution a Log-normal distribution with parameters 

 = 6,  = 0.29, = 260 (reasonable parameters for 
response times: Heathcote Brown, and Cousineau, 2004), a 
datum of 160 has a ratio near infinity whereas a datum of 
1500 has a ratio of 1211. Both would be rejected as being 
more plausibly outliers with a confidence level of 0.1%. 
 

In many researches, the population distribution has 
a known form but the precise parameters are not known. 
Let the population distribution  be a function of those 
parameters denoted collectively by , noted . The 
spurious distribution is given limits taken from the smallest 
and the largest datum. The observed distribution is 
therefore a mixture of the two distributions, where a certain 
proportion, , of the data are sampled from the population 
distribution, and the remaining, 1 – , are sampled from 
the uniform distribution. Putting it all together, 
 

 
 
Such probability density function can be fitted to 

the data by maximizing the likelihood function over the 
parameters  and . Cousineau, Brown and Heathcote, 
2004, show how this can be done with more details. Once 
the parameters  are obtained, the population distribution is 
completely determined and the ratio of Equation (12) can 
be computed. 

 
In the multivariate case, the same equations are 

valid except that instead of being applied to a single datum 
(a univariate observation), it is applied to a vector of 
observations. Figure 4 illustrates the case for a bivariate 
case in which the population distribution is binormal. Both 
cases assume that the outliers follow a uniform distribution. 
This is probably unrealistic, however, for rare low and high 
outliers, it may be sufficient to characterize them. 

 
4. What to do with outliers? 

 
Outliers that are clearly the result of a spurious 

activity should be removed. However, in multivariate 
designs, doing so may result in removing too many 
participants to the point that the analysis can no longer be 
performed. Tabachnick and Fidell (2007) suggested 
replacing the missing data with the mean of the remaining 
data in the corresponding cell. However, this procedure will 
tend to reduce the spread of the population, make the 
observed distribution more leptokurtic, and possibly 

increase the likelihood of a type-I error. A more elaborate 
technique, multiple imputations, involves replacing outliers 
(or missing data) with possible values (Elliott & Stettler, 
2007; Serfling & Dang, 2009).  

 
Figure 4. A mixture of a population distribution with a 
spurious distribution. The former is Multinormal with a 
mean of {600, 600}; the latter is uniform within the area 
delimited by the corners of the smallest and largest values 
(here assumed equal for both measures only for the purpose 
of illustration) {160, 160} and {1500, 1500} and shown 
with a lighter color. 

 

 
 
5. In what cells do we search for outliers? 

 
When the measure has been replicated a large 

number of times inside a given condition for each 
participant, as is often the case in experiments involving 
simple tasks, the search for outliers should be done across 
the replications. In this case, the scenario is univariate. 
However, in a large number of research context, it is not 
possible to replicate the measure (whether the measure is a 
questionnaire or an observation taken in an ecological 
setting). It this case, the outliers should first be searched for 
within condition across the participants. This is also a 
univariate search for outliers. There may be some chance 
that the between subject variability follows a normal 
distribution so that a simple z-score cut-off criterion may be 
used. Finally, if the participants were measured more than 
once, a multivariate search for outliers is the final step. This 
step will locate multivariate outliers, that is, subjects who 
may not be outlier on a single measure, but for which the 
observed values of a conjunction of two or more measures 
are suspicious. 

 
As can be seen, there is no single solution to the 

problem of outlier detection. In the multivariate cases, 
current research turns around the notion of clustering which 
assumes that isolated clusters are probably composed of 
outliers. The final word is therefore yet to come. 
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