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ABSTRACT 

 
 The aim of this paper is to provide an introductory tutorial to how to fit different models of recognition memory 

using maximum likelihood estimation. It is in four main parts. The first part describes how recognition memory data is 

collected and analysed. The second part introduces four current models that will be fitted to the data. The third part 

describes in detail how a model is fit using maximum likelihood estimation. The fourth part examines how the fit of a model 

can be evaluated and the appropriate statistical test applied.  
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RESUMEN 

 
El propósito de este artículo es proveer un tutorial sobre cómo ajustar diferentes modelos de la memoria de 

reconocimiento usando estimación de máxima verosimilitud. El artículo presenta cuatro partes. Primero se describe cómo se 

analizan y obtienen datos en experimentos sobre la memoria de reconocimiento. En segundo lugar se presentan cuatro 

modelos recientes que serán ajustados a los datos. La tercera parte describe en detalle cómo se ajusta un modelo usando el 

procedimiento de estimación de máxima verosimilitud. Por último se examina cómo el modelo ajustado pueden ser 

evaluado y qué pruebas estadísticas pueden aplicarse para ello. 

 

Palabras clave: memoria de reconocimiento, estimación de máxima verosimilitud, teoría de detección de señales, 

modelos mixtos, modelos de umbral alto. 
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In a typical recognition memory experiment, 

participants must discriminate previously studied items, 

called targets, from other items, called lures. In the 

simplest version of this experiment, participants are only 

required to make a yes/no decision. In a more complicated 

version, they may also provide confidence ratings. The 

advantage of the latter is that it enables different models of 
recognition memory to be compared.  Over the last 10 to 15 

years, several models of recognition have been proposed 

and much current research is focused on determining which 

may be correct. In fact, progress has been made and several 

models can been firmly rejected.  

 

Recognition memory models are explicit 

mathematical descriptions that attempt to account for the 

distribution of responses to targets and lures across the 

available response categories. The aim of this paper is to 

outline how to fit such models to the data using maximum 

likelihood estimation (MLE). This procedure provides 

estimates of the model parameters which may be useful for 
descriptive purposes. In addition, it also provides an 

estimate of how well the model fits the data which can be 

used for model evaluation. The focus will be on a practical 

introduction to these techniques rather than its 

mathematical underpinning.  

 

Table 1. Observed number of responses for targets and lures across a 6-point rating scale. 

 

Confidence Rating 

Item 

Type 
Sure Target 

Probable 

Target 

Possible 

Target 

Possible 

Lure 

Probable 

Lure 

Sure 

Lure 

Number of responses: 

Lure 111 216 349 540 625 895 
Target 1230 496 358 272 215 165 

Cumulative number of responses: 

Lure 111 327 676 1216 1841 2736 

Target 1230 1726 2084 2356 2571 2736 

Cumulative proportion of responses: 

Lure 0.04 0.12 0.25 0.44 0.67 1.00 

Target 0.45 0.63 0.76 0.86 0.94 1.00 

 

The data 

In a typical recognition memory study, a 

participant may be asked to classify a test item on a 6-point 

confidence scale. Each point on this scale may be given a 
label to indicate the appropriate level of confidence. A 

typical set of labels may be sure target, probable target, 

possible target, possible lure, probable lure, and sure lure. 

If participants are able to discriminate targets from lures 

then their responses to these items should be distributed 

differently across these categories.  Table 1 shows a typical 

distribution of responses, aggregated over participants, 

observed in an experiment conducted recently in my 

laboratory. The first two rows of data show the number of 

responses in each category to lures and targets, 

respectively. As can be seen, the distribution of responses is 

different for the two types of item, indicating that 
participants are able to discriminate, albeit imperfectly, 

targets from lures. 

 

A useful way of picturing recognition memory data is 

to construct a receiver operating characteristic or ROC 

curve. This is a plot of the hit rate against the false alarm 

rate across different decision criteria. ROC curves arise in 

the application of signal detection theory (for a general 

overview of signal detection theory and its application to 

psychology see Macmillan & Creelman, 2004). Memory 

researchers discovered early on that it is often useful to 
analyse recognition memory data using the methods of 

signal detection theory (Lockhart & Murdock, 1970). 

Figure 1 illustrates the picture that emerges. According to 

signal detection theory, targets and lures give rise to 

different distributions of memory strength with targets 
having, on average, greater memory strength than lures. 

These are illustrated in Figure 1 by two normal 

distributions, labelled lures and targets. It is further 

assumed that the different confidence judgments 

correspond to intervals on the memory strength continuum 

marked off by different decision criteria. These are 

illustrated in Figure 1 by the set of vertical lines labelled, c1 

to c5. If the memory strength of an item falls between two 

adjacent criteria, it is allocated to the corresponding 

response category, indicated by the labels at the top of 

Figure 1.  

 
Figure 1. Signal detection interpretation of recognition 

memory rating task 
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Each decision criterion defines a corresponding 

pair of hit and false alarm rates. Take, for example, the 

most stringent criterion corresponding to c1 in Figure 1. The 

hit rate corresponding to this criterion is the proportion of 

targets whose memory strength is greater than c1 – those 

that have been allocated to the sure target category. The 

corresponding false alarm rate is then the proportion of 
lures whose memory strength is greater than c1 – those that 

have been (incorrectly) allocated to the sure old category. 

Similar reasoning applies to the other decision criteria. 

Thus the hit rate for c2 is the proportion of targets that have 

been allocated to either the sure target or probable target 

categories and the corresponding false alarm rate is the 

proportion of lures so allocated. The result is that if there 

are k response categories there are k – 1 pairs of 

corresponding hit and false alarm rates. 

 

Figure 2. ROC curve corresponding to the data in Table 1. 
 

 
 

As stated above, the ROC curve is a plot of hit rate 

against false alarm rate across the different decision criteria. 

Although it is called a curve, it is actually in this case no 

more than a set of points. The remaining rows of Table 1 

show how these points are calculated. The middle two rows 

of Table 1 correspond to the cumulative number of 

responses. These are the number of hits and the number of 

false alarms, respectively, and are calculated by cumulating 

the number of responses in each category from sure target 
to sure lure (i.e. right to left in Figure 1). The final two 

rows in Table 1 express each cumulative number as a rate 

by dividing each by the total number of responses (given in 

the last column of the cumulative number of responses). 

These rates are then used to plot the ROC curve shown in 

Figure 2. 

 

The ROC curve in Figure 2 reveals two 

distinguishing features that are typical of recognition 

memory data. First, the set of points trace out a curved 

rather than a straight line. Second, this curve tends to be 

asymmetrical. If you look carefully at Figure 2, you should 

be able to see that the points tend to rise sharply on the left 

and then decline more gently on the right. Any successful 

model of recognition memory must be able to account for 

these two features. 

 

The models 
 

Models or theories serve several important functions in 

science. A model is a description of the underlying 

processes that give rise to the observed data. They serve to 

organize and to explain these data and to predict and to 

control future data (for an excellent introduction to the role 
of models in psychology see Lewandowsky and Farrell, 

2010). For example, Newton’s Law of Gravity is a model 

of a range of phenomena such as weight, the trajectories of 

falling bodies, and the orbits of planets and satellites. It 

organizes these data by unifying them within a common 

explanatory scheme. It explains these data through the idea 

that gravity is a force attracting any two bodies having 

mass. It predicts future data, such as the motion of the 

planets, and can be used to control events subject to gravity.  

 

A model may be usefully viewed as potentially 

consisting of two parts – a verbal or pictorial description 
and a mathematical description. Newton’s Law of Gravity 

verbally describes gravity as an attractive force between 

two bodies that is proportional to their masses and inversely 

proportional to their distance apart. In so doing, it provides 

a picture of what gravity is or what it is like and this 

description is often sufficient to organize and to provide an 

initial explanation of the phenomena. But Newton’s Law 

does more than this – it also provides a precise 

mathematical description of how gravity operates and, in so 

doing, allows it to predict and to control the phenomena. 

However, to do so, it must specify the verbal or pictorial 
description in a more precise way. Ultimately, this leads to 

the well-known formula for the force of gravity (F) 

between two bodies as being proportional to the product of 

their masses (m1 and m2) divided by the square of the 

distance (d) between them. That is, 

 

   
    

  
 

 
where G is the constant of proportionality, also called the 

universal gravitational constant. 

 

THE EQUAL VARIANCE SIGNAL DETECTION 

MODEL 

 

You have already been introduced to one model of 
recognition memory, that shown in Figure 1. This model 

pictures recognition memory decisions in terms of signal 

detection theory according to which targets and lures have 

different distributions of memory strength and are evaluated 
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against one or more decision criteria. In so doing, it 

organizes and explains the data. Beyond this, the model 

also provides a precise mathematical description of the kind 

of data shown in Table 1 and, in so doing, accounts for 

these data and, potentially, predicts future data. This 

mathematical description is generated by assuming that the 

target and lure distributions are both normal and have equal 
variances. This corresponds exactly to picture shown in 

Figure 1 and leads to what has been called the equal 

variance signal detection model of recognition memory. 

For this model, the hit and false alarm rates for any 

particular decision criterion are given by the following two 

equations: 

 ( )   (  ) 
 

 ( )   (   ) 
 
where c is a decision criterion and  f(c) and h(c) are the 

corresponding false alarm and hit rates, respectively. The 

function, (.), is the normal cumulative distribution 
function which returns the area under the normal curve to 

the left of its argument. For example, (0) = 0.5, 

(1) = 0.8413, and so on. Finally, d is the difference 
between the means of the target and lure distributions1.  

 

Because we cannot measure it directly, the 

continuum of memory strength that is posited by the equal 

variance model does not have any particular scale – it does 

not have a defined zero point or unit of measurement. In 

many ways, this is similar to the way in which we measure 

temperature which also does not come with a standard zero 

point or unit of measurement2. The two scales in most 

common use, the Farenheit and Celsius scales, both choose 

different zero points (0C is the freezing point of water but 

this occurs at 32F) and different units of measurement (a 

change of 1C is equivalent to a change of 1.8F). In the 
same way that the lack of standard temperature scale does 
not mean that there is no such thing as temperature, so the 

lack of a standard memory strength scale does not mean 

that there is no such thing as memory strength. Rather it 

means that we are free to define a scale in any way we 

choose, as is done for temperature. A scale that is 

commonly used when applying the equal variance model 

(as well as the other models discussed below) is to set the 

zero point at the mean of the lure distribution and to set the 

unit of measurement to be the standard deviation of this 

                                                
1
 In most treatments of signal detection theory, this quantity is called d’, 

pronounced d-prime. Here, it is labelled as d in order to preserve its 

generalizability to other models to be discussed. 

2
 It can be argued that absolute zero (-273C) is the true or natural zero 

point of temperature. In the same way, it might also be possible to define a 

zero point of memory strength. While some theorists have attempted to do 

this, it requires replacing the assumption of normal distributions with the 

assumption of other distributions that are always positive (e.g. Gamma 

distribution).  

distribution. The careful reader will note that this scale is 

built into the equations for the equal variance model 

presented above.  

 

As we will discover later, the equal variance signal 

detection model fails to properly account for the 

asymmetrical shape of the ROC curve, as shown in Figure 
2. For this and other reasons, researchers have proposed a 

number of modifications of this model to bring it into better 

alignment with the data. Three of these models are outlined 

below. Each is currently regarded as a viable model of 

recognition memory and is the subject of active research 

programs. 

 

THE UNEQUAL VARIANCE SIGNAL DETECTION 

MODEL 

 

The first of the three models is called the unequal 

variance signal detection model and is a straightforward 

extension of the equal variance model (Wixted, 2007). This 

model preserves the idea of normal distributions but allows 

the variance of the distributions to be different. The idea 

behind this is that when participants study a target item, the 

increase in memory strength that results is not a constant, as 

assumed by the equal variance model, but may vary from 
item to item. The unequal variance model assumes that this 

increase is itself normally distributed and (largely) 

independent of the item that is studied.  As a consequence, 

the variance of the target distribution must be greater than 

that of the lure distribution. The equations for this model 

are, 

 
 ( )   (  ) 

 

 ( )   (
(   )

 ⁄ ) 

 
where s is the standard deviation of the target distribution.  

 

THE MIXTURE SIGNAL DETECTION MODEL 

 

The second model is called the mixture signal 

detection model and is another way of extending the equal 

variance model to better account for the data (DeCarlo, 
2002). According to this model, participants either pay 

attention to an item in the study phase or they do not. If 

they do pay attention, the item receives a constant increase 

in memory strength, just as is assumed by the equal 

variance model. However, if they don’t pay attention then 

there is no increase in memory strength – the target at test 

has the same memory strength as a lure. As a result, the 

target distribution becomes a mixture of the target and lure 

distributions from the equal variance model. The equations 

for the mixture model are, 
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 ( )   (  ) 
 

 ( )  (   ) (  )    (   ) 
 

where λ is the probability of paying attention to a target 
item at study. 

 

THE HIGH THRESHOLD SIGNAL DETECTION 

MODEL 

 

The third model to be considered is called the high 

threshold signal detection model and extends the equal 
variance model by proposing a second kind of memory 

component and is therefore often called a dual-process 

model of memory (Yonelinas, 1994). According to this 

model, the continuum of memory strength proposed by the 

equal variance model (and the other two models discussed 

above) reflects only one component of recognition memory, 

called familiarity. This is defined as a general sense that an 

item is a target (i.e. has been studied in the relevant list) but 

without being able to retrieve any further information about 

the study episode. In addition to familiarity, participants are 

also able to rely on recollection which is defined as the 
retrieval of information from the study episode. This 

information may include the appearance of the item or 

associations that were formed when the item was studied. 

In the original formulation of this model, recollection was 

viewed as all-or-none. That is, even if only some 

information from the study episode can be retrieved then 

this is still sufficient to identify the item as a target. It is 

further assumed that recollection and familiarity make 

independent contributions to the recognition memory 

judgment in which case the equations for the model are, 

 

 ( )   (  ) 
 

 ( )    (   ) (   ) 
 

where r is the probability that some information from the 

study episode is recollected and d is the difference in 

familiarity between the target and lure distributions. 

 

Fitting the models 

 

Each of the four models listed above posit two or 

more unknown quantities. The equal variance model posits 

two quantities, d and c; the unequal variance model posits 

three, d, c, and s; as does the mixture model with the 

quantities d, c, and λ; and the high threshold model with d, 

c, and r. Depending on the values of these quantities, the 

respective models generate different predicted hit and false 
alarm rates. With one important difference, these are 

analogous to the quantities posited by Newton’s Law of 

Gravity, G, m1, m2, and d, where, by Newton's law, the 

values of these quantities can be directly measured. In the 

case of, different values of the predicted force of gravity 

can be obtained. The important difference is that in the case 

of Newton’s law, the values of these quantities of the 

models of recognition memory, we are not in a position to 

independently measure any of the posited quantities. 

Instead, we obtain values for these quantities by fitting the 

corresponding model to the data.  
 

The idea of obtaining values of the quantities 

posited by the model by fitting the model seems a bit like 

lifting yourself by your shoelaces. However, in most cases 

it turns out to be a practical and legitimate exercise. This is 

because, in many cases, the data overdetermine the model. 

This means that there are more observed data points than 

are required to calculate the quantities of interest. This 

yields two related benefits. First, it is possible to determine 

how well the model fits or successfully predicts the data. 

Second, it is possible to attach an error estimate to each of 
the quantities whose values are obtained. The idea of error 

or mis-fit is important because then it becomes possible to 

decide whether or not a model should be accepted as a good 

account of the data or whether it should be rejected.  

 

MAXIMUM LIKELIHOOD ESTIMATION 

 

What does it mean to say that a model fits the 

data? In general terms, it means that it is possible to find 

values of the quantities posited by the model such that the 

resulting outcomes, in this case hit and false alarm rates, are 

sufficiently close to the corresponding observed outcomes. 

The notion of being “sufficiently close” can be given a 

precise meaning in terms of the maximum likelihood of the 

data given the model (for an excellent introduction to this 

concept and its application to psychological models, see 

Myung, 2003). For the data given in Table 1, there are 6 

response categories for each type of item, target or lure. 
Each of these categories has an observed probability of 

being used in the experiment which is estimated by the 

observed number of responses divided by the total number 

of responses for that item type. For a particular choice of 

values of its posited quantities, a given model attaches an 

expected probability to each of these categories. Let oi be 

observed number of responses to the ith category, let ei be 

the expected number of responses and let    
  
 ⁄   be the 

expected probability of a response to this category3. Then, 

assuming that the responses are independent, the likelihood 

of exactly oi responses is   
  , or     raised to the power of 

oi. If there are a lot of responses then this is a very small 

number and so it is often more convenient to use the log 

likelihood of the data where    (  
  )        (  ). Then 

the total log likelihood of the data given the model is 

                                                
3
 If the ith category is from the set of lures then N is the total number of 

lures, otherwise N is the total number of targets. 
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simply the sum of the log likelihoods of each category. That 

is, 

 

   ∑  
 

   (  ) 

 
 

Because each pi is a probability,    (  ) is a negative 

number and hence the total log likelihood is also a negative 

number. To the extent that a model predicts that the data are 

likely, the total log likelihood will be at a maximum.  The 

aim of maximum likelihood estimation (MLE) is to find a 

set of model predictions that maximizes LL. 
 

Table 2. Predicted hit rates and false alarm rates for the equal variance signal detection model. 

 

  Decision Criteria 

Item Type Displacement c1 c2 c3 c4 c5 

Lure 0 (–c1) (–c2) (–c3) (–c4) (–c5) 

Target d (d – c1) (d – c2) (d – c3) (d – c4) (d – c5) 

 

 

FITTING THE EQUAL VARIANCE MODEL 

 

To illustrate the foregoing, we can fit the equal 

variance model to the observed data from Table 1. The first 
thing to note is the structure of these data. The observed 

data consist of the number of responses in each category. It 

is these data that the model will attempt to fit and from 

which LL will be calculated. However, the model equations 

do not express these quantities directly. Instead the 

equations specify a hit rate and a false alarm rate for a 

given decision criterion as shown in Table 2. Altogether, 

there are six quantities to be estimated – the five decision 

criteria and the displacement, d. These six quantities are 

called the parameters of the model.  

 
For a particular choice of parameter values, the 

expected hit and false alarm rates for each decision criterion 

can be calculated (see Table 2). By multiplying each of 

these rates by the total number of observed responses for 

lures and targets, the expected cumulative number of 

responses for the first five responses categories can be 

calculated. The expected cumulative number of responses 

for the sixth category is given by the total number of 

responses. From the expected cumulative number of 

responses, the expected number of responses in each 

category can be obtained. It is these that enter the formula 
for the log likelihood (LL).  

 

The foregoing is an iterative process that searches for 

the set of parameter values that maximizes LL and, 

generally speaking, a computer program is required to do 

this. One such program that is both powerful and easy to 

use is the SolverTM tool in Microsoft Excel (Fylstra, 

Lasdon, Watson & Waren, 1998) although it might be 

necessary to install it before use. Figure 3 shows an Excel 

worksheet for fitting the equal variance signal detection 

model4. The tables on the left hand side of the sheet 

recapitulate the entries in Table 1. The tables on the right 

hand side show the calculation and evaluation of the model 

predictions. Just as the tables on the left are to be read from 

top to bottom, the tables on the right, starting with the one 

labelled “EXPECTED RATE” are to be read from bottom 

to top. The “EXPECTED RATE” table calculates the 

expected hit and false alarm rates and is laid out in the same 
way as Table 2. The values in bold indicate the parameters 

that are being fitted5. The table immediately above, labelled 

“EXPECTED CUM. NUMBER” gives the expected 

cumulative number of responses in each category and can 

be calculated directly from the “RATE” table below it. 

Finally, the table labelled “EXPECTED NUMBER” gives 

the expected number of responses and is, in turn, calculated 

from the cumulative numbers in the table below. It is these 

values, in conjunction with the corresponding observed 

numbers that are used to calculate the log likelihood. This is 

done in the table labelled “LL” in which each cell contains 

the observed number of responses for the corresponding 
cell in the “OBSERVED NUMBER” table multiplied by 

the (natural) logarithm of the expected proportion of 

responses derived from the corresponding cell in the 

“EXPECTED NUMBER” table. The total log likelihood is 

the sum of these values and is indicated in italics in the cell 

immediately below that labelled “LL”. After Solver has 

been invoked, this cell is selected as the target cell (the 

value to be maximized) and the cells in bold are selected as 

the cells to be changed. If a solution is found, these cells 

will contain the best fitting parameter values.  

 
Because it is the log likelihood that is maximized, these 

values are called the maximum likelihood parameter 

estimates.  

                                                
4
 The file containing this worksheet as well as additional sheets for each of 

the other three models can be obtained either from the author or from the 

IJPR website at http://mvint.usbmed.edu.co:8002/ojs/index.php/web 
5
 This is a useful mnemonic to help identify the cells containing the 

parameter values. Similarly, the cell containing the value to be optimized 

is identified by italics. 
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Figure 3. Screen shot of an Excel spreadsheet for fitting the equal variance signal detection model. 

 

 
 

Figure 4. Best-fitting solution of the equal variance signal 

detection model. 

 

 
 

Evaluating the models 

 

The cells marked in bold in Figure 3 show the 
maximum likelihood parameter estimates for the equal 

variance signal detection model of the data shown in Table 

1. It is often a good idea to inspect these to see if they are 

plausible. In the present case they are. The estimate of d is 

1.37. This means, according to the model, that the mean of 

the target distribution is 1.37 units (i.e. standard deviations 

of the lure distribution) greater than the mean of the lure 

distribution. This seems plausible. Similarly, the values for 

the five decision criteria also seem plausible. Figure 4 

shows the estimated distributions and decision criteria 

based on these maximum likelihood estimates. The 

similarity to the idealized picture in Figure 1 is clear. 

 

EVALUATING THE EQUAL VARIANCE MODEL 

 

 At this point, as well as obtaining the maximum 

likelihood parameter estimates, it is important to know 

whether the model in question provides a good fit to the 

data. If it does then it may be accepted as a satisfactory 

account of the data and the parameter values used in some 

further way, e.g. to examine changes across different 

experimental conditions. If the model does not fit the data 

well then we have grounds for rejecting it and evaluating 

alternative models to see if they do a better job. 

 
How can model fit be evaluated? Fortunately, 

maximum likelihood estimation leads naturally to a 

statistic, called the likelihood ratio test statistic or the G2 
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statistic6, that can be used to evaluate how well a model fits 

the data – its goodness of fit. In the current context, this 

statistic can be defined as follows; 

 

    ∑  
 

   (
  
  ⁄ ) 

 

where oi and ei are the observed and expected 

number of responses, respectively, in category i. The table 

labelled “G2” in Figure 3 shows the calculation of this 

quantity. Each cell in this table contains        (
  
  ⁄ )for 

the corresponding category i. The value beneath the cell 

labelled “G2” contains the final sum. 

 

Another way of defining G2 is in terms of the 

difference between two log likelihoods. That is, 
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The second term in the parentheses is just the LL 

value that has been maximized. The first term can also be 
thought of as a maximized log likelihood, in this case of a 

model that predicts the data perfectly – where the expected 

number of responses in each cell is exactly equal to the 

observed number. Such a model can be easily devised – it 

would have one parameter for each hit or false alarm rate. 

Since there are 10 such rates in the present example, this 

model would have 10 parameters. And since it can predict 

the data perfectly with this number of parameters, it is said 

to be saturated.  

 

Looked at as a difference in log likelihoods, G2 can 
be thought of as a measure of how close a particular model 

is to the best possible model – the saturated model. If the 

difference is small, the model is doing a good job, while if 

the difference is large, it is doing more poorly. This 

difference though depends upon two factors. The first is the 

intrinsic fit of the model. The second is the number of 

parameters in the model. All things being equal, the more 

parameters a model has the better it will fit the data. We 

have seen this already in the case of the saturated model – it 

has the most parameters and fits the data perfectly. 

 

It turns out that there is a test for the size of G2 that 
takes into account both the intrinsic fit of the model and 

how many parameters it has. This is because, for large 

samples, G2 is distributed as a chi-squared test statistic with 

degrees of freedom given by the difference between the 

number of parameters in the saturated model and the 

number of parameters in the model of interest. Since the 

                                                
6
 This statistic is most frequently referred to as the G2

 statistic in the 

psychology literature and I will maintain that usage here. 

saturated model has 10 parameters and the equal variance 

model has 6 parameters (consisting of d and the five 

decision criteria), it has 4 degrees of freedom. The critical 

2 with 4 d.f. and  = 0.01 is 13.28. The observed G2 value 
is 82.36 and so we can conclude that the equal variance 

model does not provide a satisfactory fit to the data. In fact, 

it provides a very poor fit. 

 
The failure of the equal variance model is shown 

in Figure 5a. This shows the same ROC plot of the data as 

in Figure 2 along with the ROC curve predicted by the best 

fitting equal variance model. Although the model was fit 

only to the data shown in the Figure, it is possible to use the 

maximum likelihood parameter estimates to construct an 

entire ROC curve. What this curve demonstrates is the 

major weakness of the equal variance model – its failure to 

account for the asymmetrical nature of the recognition 

memory ROC curve. The equal variance model ROC curve 

is symmetrical and so tends to underestimate data on the 

left of the curve and to overestimate data on the right of the 
curve. This is a systematic effect and because each response 

category contains a large number of observations, even 

relatively small departures from the data are statistically 

significant. Therefore we can reject the equal variance 

model. 

 

EVALUATING THE ALTERNATIVE MODELS 

 

The remaining panels in Figure 5 show the best-

fitting ROC curves for the other three models that we have 

considered – the unequal variance model (Panel b), the 

mixture model (Panel c) and the high threshold model 
(Panel d). The G2 values obtained for these models are 3.03, 

4.37, and 23.89, respectively. As noted earlier, each of 

these models has one more parameter than the equal 

variance model and so the associated degrees of freedom of 

each are reduced by one to 3. The critical 2 with 3 d.f. and 

 = 0.01 is 11.34 which suggests that both the unequal 
variance and mixture models fit the data well (the actual p 

values are 0.39 and 0.22, respectively) while the high 

threshold model can be rejected (actual p value is 0.00003). 

As with the equal variance model, it is instructive to see 

how the high threshold model fails to account for the data. 

In this case, inspection of Figure 5d suggests that its major 

failing is that it is not sufficiently curvilinear to capture the 

present data (even though the deviations seem quite small). 
It should be borne in mind that the present data are the 

results of only one experiment and have been summed over 

a number of individual participants and it is possible that a 

different outcome might be found if each participants is 

modelled individually (for an investigation of the relative 

benefits of group or individual level modelling, see Cohen, 

Sanborn & Shiffrin, 2008). 
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Figure 5. Observed and predicted ROC curves for each model. (a) Equal variance signal detection model. (b) Unequal 

variance signal detection model. (c) Mixture signal detection model. (d) High threshold signal detection model 

 

(a) (b) 

  

(c) (d) 

  

 

CONCLUSIONS 

 

The aim of the present paper has been to provide an 

introductory tutorial on how to fit models of recognition 

memory data using maximum likelihood estimation. 

However, the relevance of this approach extends beyond 

the relatively narrow field of models of recognition 
memory. Many psychological models, if expressed with 

sufficient mathematical precision, can be fit to data using 

MLE. The value of this approach is that it includes a wide 

range of additional statistical machinery, such as the G2 

statistic, which can be used to answer many questions about 

models and their relationships to the data. It is my hope that 

as more researchers become acquainted with these 

techniques, they will become increasingly prepared to 

propose models that go beyond a verbal or pictorial 

description and include a precise mathematical description  

 

which would then allow it to be formally evaluated against 

data in order to determine if it satisfactorily accounts for the 

data and, if it does not, how and why it fails. 
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