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Abstract . The glucose homeostasis is responsible for regulating the blood glucose concentration around 100 mg / dl. As soon as this 
mechanism is broken due to the inability of the pancreas to produce insulin, the blood glucose levels increase and patients are 
diagnosed with Type 1 Diabetes Mellitus (T1DM). Research has been directed towards the creation of an artificial pancreas allowing 
the regulation of glucose levels in blood. However, one of the main difficulties is that not all internal variables of the mathematical 
model can be measured directly, preventing the implementation of automatic controllers. Therefore, it is necessary to use estimation 
schemes to reconstruct the unknown states by using the available measurements. In the case of T1DM, the delay between the blood 
glucose �	 and the interstitial glucose 
	  has a negative effect on the performance of state estimators, so the treatment of this delay 
is necessary either from the modeling process or by a modification of the estimation techniques. Two scenarios are discussed in this 
contribution. First, the �	 is assumed to be measured from continuous glucose monitors (CGM) which introduces a measurement 
delay affecting the performance of the studied filter. Then, in a second scenario, the dynamic relationship between �	 and 
	 is added 
to prevent the filter to deal directly with the measurement delay, then giving better results. 

Keywords . EKF, state estimation, glucose homeostasis, insulin, mathematical model, T1DM. 

Monitoreo de la Concentración de la Glucosa Plasmát ica en Pacientes en 
Cuidados Intensivos usando Mediciones de Glucosa In tersticial  

Resumen . La homeostasis de la glucosa es responsable de mantener la concentración de glucosa en sangre alrededor de 
100 �� / 
�. Cuando este mecanismo está roto por la incapacidad del páncreas para producir insulina, los niveles de glucosa en la 
sangre aumentan y los pacientes son diagnosticados con Diabetes Mellitus. Por lo anterior, algunas investigaciones han apuntado 
hacia la creación de un páncreas artificial que permita la regulación automática de los niveles de glucosa en la sangre. Sin embargo, 
una de las mayores dificultades es que no todas las variables internas del modelo matemático se pueden medir directamente. Por lo 
anterior, es necesario el uso de esquemas de estimación para reconstruir los estados desconocidos por medio de mediciones 
disponibles. Sin embargo, el retardo entre �	 e 
	 tiene un efecto negativo en el rendimiento de los estimadores de estado, por lo que 
el tratamiento de este retardo es necesario ya sea desde el proceso de modelado o mediante una modificación de las técnicas de 
estimación. De los resultados obtenidos se puede inferir que en el escenario 1 los valores estimados tienen picos que no son realistas 
desde el punto de vista fisiológico, esto debido al efecto negativo del retardo en la medición. De manera contraria, en el escenario 2 
que incluye dinámica de la glucosa intersticial, el estimador exhibe un mejor rendimiento. 

Palabras clave . DMT1, estimación de estado, FKE, homeostasis de la glucosa, insulina, modelo matemático.

1. Introduction 

The glucose homeostasis is a natural negative 
feedback system responsible for blood glucose 
regulation. Such a regulation is performed by means of 
the insulin and glucagon hormones which help to lower 
and raise the glucose levels as needed, respectively. 
When glucose levels are not held at desired values, there 
is an indication of metabolic impairment. Diabetes 
Mellitus (DM) is a chronic disease appearing when such 
a homeostasis is broken, either due to the absence of 
the insulin hormone or because the body does not use 
the insulin hormone properly. Nowadays, although there 
are many variations of DM, type 1 diabetes mellitus 
(T1DM), type 2 diabetes mellitus (T2DM), and 
gestational diabetes mellitus (GDM) are the most 
common forms of this disease. The insulin is a hormone 
that facilitates the glucose uptake into the insulin 
sensitive tissues, so that most body cells may carry out 
their metabolic paths [1]. When insulin is not present in 
the bloodstream, most body cells are not able to catch 
the glucose and therefore the blood glucose 

concentration raises. Regarding to the epidemiological 
point of view, DM's projections indicate an acute raise of 
population through 2035, given mainly to the western 
lifestyle [2].  

On the other hand, according to Chase and coworkers 
in [3], glucose control in critically ill patients gained 
attention from the beginning of 2000 thanks to the work 
of Van der Berghe and coworkers in [4] which shown 
better survival rates in patients at the intensive care unit 
under tight glycemic control treatments. With this study, 
the attention of health practitioners turned on the 
development of better policies to monitor and control 
glycemic levels at the intensive care unit (ICU) even in 
patients without a diagnosis of diabetes. 

Recent studies shown that the tighter the glucose 
control of the ICU patients the more dangerous becomes 
since hypoglycemic events are more likely to occur [5]. 
In this sense, although controversy is still present, it is 
clear that the main objective for a patient at the ICU is to 
maintain the glucose levels in a healthy interval provided 
that hypoglycemia is avoided. In [6] an interval of (140 −
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180 ��/
�) is suggested instead of (81 − 108 ��/
�) 
since the latter interval was associated to a higher 
mortality rate compared to the former interval. 

Since the health of a critically ill patient is likely to 
become unstable, the continuous monitoring of the blood 
glucose concentration will help to avoid hyper and 
hypoglycemic events. Hyperglycemia is usually 
associated to long-term complications although in ICU 
patients would cause a multi systemic failure. 
Hypoglycemia is always way more dangerous than 
hyperglycemia since it would cause mortal complications 
since the patients are not able to react by themselves. 
According to the American Diabetes Association, the 
association upon which the Colombian health system is 
based on, patients at the ICU are monitored a few times 
a day by using conventional glucometers. Therefore, 
depending on the frequency of the measurements, the 
ability to follow the patient stability and the effects of 
treatments is limited. In order to offer a more continuous 
glucose monitoring, there exist devices implanted at the 
interstitial tissue able to provide glucose concentrations 
every five minutes on average. Such a devices are 
usually known as Continuous Glucose Monitors (CGM) 
and are nowadays being massively used to treat patients 
with T1DM. However, the CGM measures the glucose 
concentration at the interstitial tissue and not on the 
plasma glucose which is the variable of interest. 

The development of an artificial pancreas is being a 
matter of interest from many years ago and a commercial 
device is foreseen in the near future. The artificial 
pancreas is an external device able to apply exact doses 
of insulin and glucagon using measurements of glucose 
concentration according to an advanced control 
algorithm. Although this device is mainly intended for 
patients with T1DM, it would also help both diabetic and 
non-diabetic patients at the ICU for plasma glucose 
control.  

Model-based controllers are found to be mainly used 
in artificial pancreas initiatives due to its ability to deal 
with complex multivariate systems and the possibility of 
constraint handling [7]–[9]. In this sense, mathematical 
models are used to predict the behavior of the system of 
interest in order to apply the best control inputs to the 
real system. In the context of a biomedical device like an 
artificial pancreas, there exist additional engineering 
tasks benefited from accurate mathematical models of 
the glucose homeostasis like drug/treatment testing, 
patient monitoring, experimental design, and variables 
and parameter estimation, among others [10]. 

State estimation is a powerful tool to estimate key 
variables in the system dynamics by using a 
mathematical model and available measurements. In the 
context of the artificial pancreas, state estimators are 
needed to estimate the plasma glucose concentration, 
plasma insulin, interstitial insulin, among other variables, 
measuring solely the interstitial glucose from the CGM. 
Contributions about state estimation for an artificial 
pancreas application are found in [11],[12] and [13]. 
However, most of these contributions assume the 

measurement of the plasma glucose using the CGM 
which does not correspond to the human physiology 
since there is a considerable delay among the plasma 
and interstitial glucose concentration. 

In this contribution, the problem of not accounting the 
delay between the plasma glucose and interstitial 
glucose is analyzed under a state estimation problem. In 
Section 2, the delay between plasma glucose and 
interstitial glucose is shown. An extended mathematical 
model for glucose monitoring at the ICU, taking into 
account the dynamics between interstitial glucose and 
glucose in plasma, is presented in Section 3 from 
previously published models. In Section 4, the design 
and simulation of an Extended Kalman Filter (EKF) is 
studied assuming first the measurement of plasma 
glucose and second the measurement of interstitial 
glucose in order to show the effect of the measurement 
delay over the estimation. Finally, some conclusions and 
future work are presented in Section 5. 

2. Problem statement  

Currently, glucose concentration monitoring in 
humans is made by using two types of sensors, the CGM 
and the glucometer, in order to control blood glucose 
levels by using different strategies, e.g., insulin pump, 
insulin injections, and oral medicines. However, it is 
important to understand that there is a considerable 
difference in the operation of both sensors. CGM is an 
electronic device to measure the interstitial glucose 
concentration (see Figure 1) every 5 minutes for 24 
hours a day. A glucometer is an electronic device that 
allows to determine the approximate concentration of 
glucose in plasma by a sample taken from a finger prick, 
in a frequency given the recommendation by a physician 
or specialist. 

In physiological terms, there is a time and 
concentration difference between interstitial glucose 
measurement and blood glucose measurement. In this 
sense, the glucose measurement obtained by the 
glucometer is an approximation of the real value in 
plasma, since the distribution of glucose toward the 
capillaries is not instantaneous. Similarly, when the CGM 
gives a measurement, it cannot be linked directly to the 
plasma glucose concentration without accounting for the 
transport and diffusion phenomena taking place between 
plasma and interstitial tissue. 

Using the CGM as the measurement device, the 
problem of estimating the state can be tackled in two 
ways. First, it is assumed that the CGM measurements 
is due to a delayed version of the plasma glucose. 
Second, the dynamic relationship between both plasma 
glucose and interstitial glucose is given and therefore the 
interstitial glucose is assumed to be measured. The 
above scenarios are studied in the present paper. 
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Figure 1. Diffusion of glucose since the plasma tow ard 

the interstitial fluid ((adapted from [14]) 

3. Mathematical Model of Insulin-Nutrition-Glucose 

In 2010, Lin and coworkers presented a modification 
of the Bergman's minimal model for tight glycemic control 
in patients who were at the ICU [15]. A diagram showing 
the interaction of the different compartments and organs 
is shown in Figure 2. The variables used are described 
in the Appendix 1. 

 
Figure 2. Model Compartments including the 

Interstitium. 

The mathematical model under study includes five 
states: blood glucose (�	), insulin concentration in the 
interstice (�), insulin in plasma (
), the amount of glucose 
in the stomach (��), and the amount of glucose in the gut 
(��). The equations of the mathematical model are 
summarized as follows. A description of the model 
variables and parameters together with its units and 
numerical values are presented in the Appendix 1. 
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where �, as it is defined in (6), corresponds to the 
glucose appearance into the blood stream from the 

enteral nutrition, 345 is the endogenous insulin 
production, and min stands for the minimum function.  

� � min(
���, �>?@) " �A         (6) 

345 � ��B&�(�)
C9
CD               (7) 

The model presented in (1) - (5) was proposed to 
control the blood glucose by infusion of exogenous 
glucose (in case of hypoglycemia) and insulin hormone 
(in case of hyperglycemia). However, although the model 
proposed shows a relationship existing between glucose 
and the hormone insulin, this model does not take into 
account the dynamics between interstitial glucose and 
glucose in plasma, what represents one of two strong 
assumptions. On one hand it may indicate that they are 
taking measurements in blood continuously (which is 
highly invasive for the patient and costly for the health 
system), or otherwise, it may mean that the interstitial 
glucose concentration is a real time reflection of the 
concentration of glucose in plasma. Therefore, a 
mathematical model extended by adding a differential 
equation allowing to establish the dynamic relationship 
between interstitial glucose and glucose in plasma is 
proposed, so that the delay can be taken into account.  

The additional differential equation (8) was taken from 
the work of King et al [16]. This differential equation 
establishes a consumption and transport relationship 
between glucose in plasma and the glucose reaching of 
the interstitium of cells for to be used [16]. A change of 
variable (� by E) was performed so this parameter is not 
confused with the gain of EKF. 

���
�� � E��	 − E�
	             (8) 

where 
	  stands for interstitial glucose and E� and E� 
are parameters allowing to establish the relationships 
between the variables. 

4. State estimation  

In order to estimate the state in the glucose-insulin 
system, the Extended Kalman Filter (EKF) is chosen due 
to the ability to cope with nonlinear systems and its ease 
of implementation. In Figure 3, the estimation scheme 
used is presented. Where 8 is the disturbance, �	 and 

	  are the measured states according to the simulation 
scenario, 34@ is the input of exogenous insulin and 24@� 
is the vector of estimated state. 

 
Figure 3. State estimation scheme. 

The EKF is a derivation of the Kalman Filter, that is 
based in the linearization of the nonlinear system  around 
a nominal trajectory state and was originally proposed by 
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Stanley Schmidt in order that the KF was able to be used 
in nonlinear systems [17]. The EKF algorithm is 
summarized as follows. 

4.1 Extended Kalman Filter equations 

The EKF is composed for the equations of the 
nonlinear dynamic system, the initialization to the a priori 
estimation error covariance and priori estimated state, 
the linearization point to point and update equations as 
follows [17]. 

• Dynamic system equations: 

2, � � F,(2,,3,, G,)            ( 9) 

H, � ℎ,(2,,I,)              (10) 

G,~A(0, �,)               (11) 

I,~A(0, K,)               (12) 

• EKF initialization: 

2L
 � M(2L)                (13) 

�L
 � MN(2L − 2OL) − (2L − 2OL)PQ       (14) 

• for  R � S, T. . . V 
 

o Calculation of matrices of partial derivatives: 

F,&� �  WXCY7
W@ Z

@CY7
[ ,/C

            (15) 

\,&� �  WXCY7
W] Z

@CY7
[ ,/C

  

o A priori state estimate and estimation error 
covariance: 

�,
& � F,&��,&�

 F,&�
P +�,&�          (17) 

2O,
& � ,̂&�(2O,&�

 ,3,&�)           (18) 

o Calculation of matrices of partial derivatives: 

_, �  W`C
W@ Z

@C
Y,/C

              (19) 

a, �  W`C
Wb Z

@C
Y,/C

              (20) 

o Updating the state estimation and estimation 
error covariance: 

c, �  �,
&_,

P(_,�,
&_,

P " K,)         (21) 

 2,
 � 2,

& " c,NH, − ℎ,(2O,
&)Q         (22) 

�,
 � (
 − c,_,)�,

&            (23) 

where F, is the nonlinear model, ℎ, is the 
measurement function, 2, ∈ ℝ5 is the system state, 3, ∈
ℝ> is the control input, H, ∈ ℝf is the measurement 
vector, and G, ∈ ℝ5 and g, ∈ ℝf are white noises 
defined in (11) and (12) with �, and K, its covariance 
matrices, respectively. �, ∈ ℝ5×5 is the estimation error 
covariance matrix with �L its initial condition, and c, is 
the Kalman gain. Finally, 2O, ∈ ℝ5 is the estimate of 2,. 
The symbols – and " on the estimates stand for the a 
priori and the a posteriori estimates, respectively. 

EKF simulation.  

The simulation of the EKF was performed using 
Matlab® and Simulink® release 2016 in a computer with 
processor intel(R) core(TM) i3-2330M of 2.20GHz of 64 
bits. 

Simulations are performed assuming a patient at the 
ICU using measurements from a CGM. Two scenarios 
are proposed. First, it is assumed the measurement of 
plasma glucose concentration by using the measures of 
CGM. Second, using (8) it is assumed the measurement 
of interstitial glucose. In this way, the EKF filter should 
estimate the state variables, i.e., plasma glucose 
concentration �	, interstitial and plasma insulin � and 
, 
respectively, the amount of glucose in the stomach and 
intestine ��  and ��, respectively.  

4.2 Studied scenarios 

In the following, the two studied scenarios are 
presented. In the first scenario, the blood glucose is 
assumed to be measured directly from the CGM. 
Although used in many reviewed contributions, this 
assumption has showed to be strong since the plasma 
glucose cannot be measured directly. Instead, the CGM 
gives (abdominal) interstitial glucose levels which have 
proven to be different from plasma levels. In a second 
scenario, the measurements from CGM are assumed to 
be taken from (abdominal) interstitial tissue. Then, the 
dynamic relationship between plasma glucose and 
interstitial glucose is added to compensate the time delay 
when assuming the measurement of the former. 

4.2.1 State estimation assuming the measurement 
of plasma glucose concentration from the 
CGM.  

Consider the state according to the model (1) - (7) in 
discrete-time after discretizing with a zero-order hold with 
sampling time jk � 1 �l+ [15] 

2, � N�	,   �,   
,   ��,   ��,   QP          (24) 

with 2, the discrete-time state at time �, H, � �	, , the 
measurement assuming plasma glucose from the CGM. 
The units of the state variables are(��m�/\) ,(�n/
\),(�n/\), (��m�) and  (��m�), respectively. Assume 
the following initial condition for the in silico patient 

2L � N 5 10.7655 20 22 111QP     (25) 

The EKF was initialized as: 

2OL � N 5.5 11.2655 20.5 22.5 111.5QP  (26) 

The selection of the tuning matrices for the EKF was 
performed by a trial-and-error procedure taking into 
account the root mean square error (RMSE) index. The 
tuning matrices � and K were set as follows.  

� � 0.001 ⋅ 
s               (27) 

Where 
s  is an identity matrix of order 6th and 0.001 is 
the weight assigned heuristically. 

K � 100                 (28) 

(16) 
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Finally, the estimation error covariance kP +  was 

initialized as an identity matrix of 6th order as follows 

�L
 � 
s                 (29) 

As it was mentioned before, the plasma glucose 
concentration is assumed as the measured variable. 
However, because it is known that monitoring is being 
carried out by using a CGM, the diffusion mechanism 
from plasma to the interstitium is not accounted for. 
Therefore, to make the simulation realistic, a 
physiological delay is added as it is suggested in several 
studies about CGM [18]. According to a study performed 
by Stout and coworkers in [19], it is concluded that the 
time delay between the blood glucose concentration and 
the interstitial glucose concentration can be set in a 
range of 15 − 25 �l+. For this simulation a delay 
 �
15 �l+ is considered. 

In Figure 4, there is an evidence of the negative effect 
of the measurement delay in the performance of the 
EKF. In this case, the estimated variable takes about 
900 �l+ to start to converge to the value of the real state, 
which could be dangerous for decision-making in an ICU. 
Figure 5 shows the estimation of both the interstitial 
insulin and insulin in plasma. As it is seen, the estimator 
for the case of interstitial insulin takes approximately 
700 �l+ to converge the value of the real state. 

In the case of the states �� and ��, the measurement 
delay causes the same effect as in the previous states, 
making the estimator to take approximately 900 �l+ to 
converge to the real state value. 

 
Figure 4. Blood glucose and estimated blood glucose  

in presence of delay in the measurement. 

 
Figure 5. Interstitial insulin and plasma insulin 

estimated from blood glucose measurements. a) 
Interstitial insulin. b) Plasma insulin. 

 
Figure 6. Glucose in the stomach and glucose in the  

gut estimated from blood glucose measurements. a) 
Glucose in the stomach. b) Glucose in the gut. 

4.2.2 State estimation assuming the measurement 
of interstitial glucose concentration.  

Nowadays, there is not a way to perform direct blood 
glucose measurements without compromising the 
patient's sepsis. The only direct blood glucose 
measurements should be done in a clinical environment 
and usually take time to be analyzed in the laboratory 
facilities. In order to perform on-line monitoring, the CGM 
constitutes an interesting tool. However, it should be 
considered that the measurement is performed over the 
interstitial glucose instead of the blood glucose. In order 
to overcome the above issue, the dynamics from the 
blood glucose to the interstitial glucose is added as from 
(8). Then, the new state vector becomes 

2, � N�	,  
	,   �,   
,   ��,   ��,   QP       (30)   

where 
	, is the interstitial glucose at time �. The 
values of the variables are given in (��m�/\) , 
(��m�/\), (�n/\), (�n/\), (��m�), (��m�), and 
(��m�/�l+), respectively. It is easy to realize that the 
new state vector is also locally observable around the 
operating point presented in (32). 
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The EKF was initialized as 

2OL � N 5.5   5.5 11.2655 20.5 22.5 111.5QP (31) 

and the in silico patient is initialized as 

2L � N 5    5 10.7655 20 22 111QP   (32) 

Again, the selection of the tuning matrices was 
performed by a trial-and-error procedure taking into 
account the root mean square error (RMSE). The tuning 
matrices � and K were set as 

� � 0.001 ⋅ 
u               (33) 

K � 100                 (34) 

Where 
u  is an identity matrix of 7th order and 0.001 is 
the weight assigned heuristically. Finally, the estimation 

error covariance kP +  was initialized as shown in (35).  

�L
 � 
u                 (35) 

To simulate the effect of the measurement noise, a 
Gaussian noise was assumed as follows. 

I,~A(0,0.1)               (36) 

In this work, no modeling uncertainty was accounted 
for. 

In Figure 7, the concentration of blood glucose is 
estimated from CGM measurements. It is important to 
note that the estimate converges to the real value in an 
acceptable time because the new mathematical model 
included a differential equation describing the dynamics 
between the interstitial glucose and glucose in plasma. 

 
Figure 7. Blood glucose estimated from interstitial  

glucose measurement. a) Interstitial glucose. b) Bl ood 
glucose.  

In Figure 8, it is observed that the estimated state of 
interstitial insulin converges in a time of approximately 
650 �l+ to the value of the real state. Moreover, in Figure 
8b it is shown that the estimated state of the plasma 
insulin converges in a time of about 5 �l+ to the real 
state. 

Figure 9 shows the estimation of the glucose mass in 
the stomach and gut. The transient behavior is 
considered acceptable since the evidenced overshoots 
are within normal operation levels. The noise is shown to 
be filtered also for these states. 

 
Figure 8. Interstitial insulin and insulin in plasm a 

estimated from interstitial glucose measurement. a)  
Interstitial insulin estimated. b) Insulin in plasm a 

estimated 

 
Figure 9. Glucose in the stomach and Glucose in the  

gut estimated from interstitial glucose measurement . a) 
Glucose in the stomach.  b) Glucose in the gut. 

5. Conclusions 

The problem of estimating the state of the glucose-
insulin system for a patient at the ICU was studied. First, 
the typical assumption of measuring plasma glucose 
using CGM measurements is analyzed and discussed. It 
is shown that the problem can be tackled in two different 
ways. First, if CGM measurements are assumed for 
plasma glucose, a mechanism for accounting the delay 
between plasma glucose and interstitial glucose is 
needed. Otherwise, interstitial glucose is assumed to be 
measured from CGM but the dynamical relationship 
between plasma glucose and interstitial glucose is 
provided. 

The results were satisfactory since it was possible to 
estimate the complete state of the system from a single 
measurement (interstitial glucose). For the states 
glucose in the stomach and glucose in the gut, an 
estimation error of 0.1 ��m� is reached. 

The next step in this research is to cope with the delay 
measurement for estimating states by modifying or 
merging some of estimation techniques currently 
available in the literature in order to compare the results 
of the present contribution. Moreover, alternative 
nonlinear estimation strategies are to be used. 
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Appendix: system parameters  

P Value Units Description 

vw State  mmol/L Blood glucose  

�w State mmol/L Interstitial glucose 

� State mU/L Interstitial insulin 

� State mU/L Plasma insulin 

�S State mmol Glucose in the stomach 

�T State mmol Glucose in the gut 

�w 0.006 min&� Patient endogenous glucose 
removal 

�� 0.002 L
mU /min 

From former model since it is 
identified online 

�w 0.0154 L/mU Saturation of insulin-
stimulated glucose 

�(�) Fcn mmol/min External nutrition 

�w�� 1.16 mmol/min Basal endogenous glucose 
production 

��� 0.3 mmol/min Insulin independent central 
nervous system glucose 
uptake 

�w 13.3 L Glucose distribution volume 

�� 3.15 L Insulin distribution volume 

Iα  0.0017 L/mU Saturation of plasma insulin 
disappearance 

Cn  0.003 min&� Parameter 

In  0.003 min&� Transcapillary difussion rate 

Kn  0.0542 min&� Kidney clearance 

Ln  0.1578 min&� Patient specific liver 
clearance 

exu  7.5953 mU/min Exogenous insulin input 

Lx  0.67 N Q First pass endogenous 
insulin hepatic uptake 

enu  Fcn mU/min Endogenous insulin 
production 

1d  0.0347 min&� Transport rate 

2d  0.0069 min&� Transport rate 

D 0.7672 mmol/min Disturbance-Amount of 
dextrose from enteral feeding 

maxP  
6.11 mmol/min Saturation value of �T 

PN 0 mmol/min Parenteral dextrose 
(intravenous) 

1k  
45.7 mU/min Base rate for endogenous 

insulin production 

2k  
1.5 N Q Generic constant for 

exponential suppression 

3k  
1000 N Q Generic constant for 

exponential suppression 

1β  
0.0099 min&� Parameter 

2β  
0.0099 min&� Parameter 
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