
Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012. 31

EVALUATION OF GCC OPTIMIZATION PARAMETERS

Rodrigo D. Escobar
The University of Texas at San Antonio

rodavesco@gmail.com

Alekya R. Angula
The University of Texas at San Antonio

a.alekyareddy@gmail.com

Mark Corsi
The University of Texas at San Antonio

mark@corsi.us

(Tipo de Artículo: Investigación. Recibido el 10/11/2012. Aprobado el 23/12/2012)

ABSTRACT
Compile-time optimization of code can result in significant performance gains. The amount of these gains varies widely depending
upon the code being optimized, the hardware being compiled for, the specific performance increase attempted (e.g. speed,
throughput, memory utilization, etc.) and the used compiler. We used the latest version of the SPEC CPU 2006 benchmark suite to
help gain an understanding of possible performance improvements using GCC (GNU Compiler Collection) options focusing mainly
on speed gains made possible by tuning the compiler with the standard compiler optimization levels as well as a specific compiler
option for the hardware processor. We compared the best standardized tuning options obtained for a core i7 processor, to the
same relative options used on a Pentium4 to determine whether the GNU project has improved its performance tuning capabilities
for specific hardware over time.

Keywords
Compiler optimization, Machine Learning, Compiler Heuristics, Programming Languages, Processors.

EVALUACIÓN DE PARÁMETROS DE OPTIMIZACIÓN GCC

RESUMEN

La optimización en el tiempo de compilación del código puede resultar en ganancias de rendimiento significativas. La cantidad de
dichas ganancias varía ampliamente dependiendo de código a ser optimizado, el hardware para el que se compila, el aumento
que se pretende en el desempeño (e.g. velocidad, rendimiento, utilización de la memoria, etc.) y el compilador utilizado. Se ha
utilizado la versión más reciente de la suite de benchmarks SPEC CPU 2006 para ayudar a adquirir la comprensión de las mejoras
posibles en el desempeño utilizando las opciones GCC (GNU Compiler Collection) que se concentran principalmente en las
ganancias de velocidad fueron posibles ajustando el compilador con los niveles de optimización del compilador estándar así como
una opción de compilador específica para el procesador de hardware. Se compararon las opciones más estandarizadas de ajuste
obtenidas para un procesador core i7, para las mismas opciones relativas utilizadas sobre un Pentium4 para determinar si el
proyecto GNU ha mejorado sus capacidades de ajuste de desempeño para el hardware especifico en el tiempo.

Palabras clave

Optimización de compilador, Aprendizaje automático, Heurística de compiladores, Lenguajes de programación, Procesadores.

ÉVALUATION DE PARAMÈTRES D’OPTIMISATION GCC

Résumé
L’optimisation du temps de compilation du code peut résulter dans profits significatifs de rendement. La quantité de tels profits
change largement selon le code à être optimisé, le hardware pour lequel on compile, l’augmentation prétendue dans le
rendement (e.g. vitesse, rendement, utilisation de la mémoire, etc.) et le compilateur utilisée. On a utilisé la version le plus
récent de la suite de benchmark SPEC CPU 2006 pour aider à la compréhension des améliorations possibles sur le rendement
en utilisant les options GCC (GNU Compiler Collection) qui se centrent essentiellement sur les profits de vitesse qu’ont été
possibles en ajustant le compilateur avec les niveaux d’optimisation du compilateur standard, de même que une option de
compilateur spécifique pour le processeur de hardware. On a comparé des options les plus standardisés d’ajustage obtenus
pour un processeur core i7, pour les mêmes options relatives utilisés sur un Pentium4 pour déterminer si le projet GNU a
amélioré ses capacités d’ajustage de rendement pour le hardware spécifique dans le temps.

Mots-clés
Optimisation de compilateur, Apprentissage automatique, heuristique pour compilateurs, langages de programmation,
processeurs.

Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012. 32

1. INTRODUCCIÓN
Compiling and optimizing software for a specific
machine is more of an art than a science. Performance
tuning is dependent upon so many factors that there is
cutting edge work being performed on implementing
machine learning as a methodology for determining the
best compile time options [1] Due to this complexity,
compilers - specifically the GNU Compiler Collection
(GCC) have developed standardized compile time
optimization switches (6 levels) along with many other
flags which allow the user to control a lot of
characteristics of the code produced by the compiler
[2], [3], [4]. Among all these compiling options, GCC
also have standardized compile time options for
specific processor classes (e.g. Intel i7 core, Pentium
4, and others), which can be set using the mtune
parameter.

Besides, the Standard Performance Evaluation
Corporation (SPEC) has developed a well-known and
widely used suite of integer and floating point CPU-
intensive benchmarks for the purpose of testing and
comparing hardware platforms [5]. The last version was
released in 2006 and it is called SPEC CPU2006.
SPEC CPU2006 consists of 12 integer and 7 floating
point compute-intensive workloads called CINT2006
and CFP2006 respectively, which are provided as
source code and may be compiled with different
options. Thus, they can be used as a test bed to
compare the performance of different computer
architectures, as well as the efficacy of different
compiler optimization options [2]. The CINT2006 suite
measures the compute-intensive integer performance,
while the CFP2006 suite measures the compute-
intensive floating point performance [6].

GCC is arguably the most utilized, publicly available
compiler in use today. It is provided as the default
compiler on most Linux systems and it is a highly
developed library which has been in production since
the 80’s [7]. Because it has been in production for such
a long time, we could use it in combination with the
SPEC CPU2006 Benchmark Suites and two vastly
different hardware platforms to determine whether the
de facto standard compiler had improved its
performance-based tuning for specific hardware over
the last decade.

The remainder of this paper is organized as follows:
The next section includes the motivation. Section 3
presents a brief introduction to compilers and compiler
optimizations. Section 4 describes the experimental
setup and methodology. Our approach, results, and
additional statistics of the optimizations are discussed
in Section 5. Section 6 discusses future work, and
finally Section 7 concludes.

2. MOTIVATION
A large variety of programs are executed every day on
different processors available in the market. Most of
these programs have been subject to a compilation
process before their execution. Compilation processes
are complex and involve lot of areas of computer

science. In this paper, we aim to assess the
performance of the GCC compiler when its different
optimization parameters are set. Each optimization
level includes over twenty optimizations options.
Therefore, a detailed analysis of how each optimization
technique affects the results is out of the scope of this
paper. Instead, we try to get a general idea about how
the GCC compiler has improved its capabilities to apply
optimization techniques to specific processors.
Compilers’ configuration parameters that have been
designed to generate optimized code for a particular
hardware, such as the mtune parameter provided in the
GCC compiler, are of particular interest. The motivation
behind it is to see whether or not compilers are getting
better over time at optimizing for specific architectures.
Although machine learning may one day become the
best way of optimizing the installation or compilation of
software [1], it currently does not appear to be a
solution that is ready for prime time production use. In
the mean time, compilers will need to become even
more efficient at utilizing the underlying system
architecture through self-optimization. In this paper we
examine options, also called switches, that are already
present in GCC and that could easily be automated to
be 'turned on' at compile time after examining the
hardware it is running on. Moreover, we discuss
whether work has been ongoing over the last decade
into making optimizations for specific hardware
stronger.

3. COMPILERS’ OPTIMIZATION TECHNIQUES
Compilers are basically computer programs that
translate a program written in a specific language to a
program written in another language [8]. The source
program is usually a program that has been written in a
high level programming language, whereas the result of
the translation procedure is usually a program ready to
be executed by a processor (i.e. machine language
code). A compiler must stick to two fundamental
principles:

 A compiler must preserve the meaning of the

source program.
 A compiler must improve the source program.

Preserving the meaning of the source program means
that every time the translated program is executed, it
produces exactly the same output that the source
program would produce when supplied with the same
input data. On the other hand, improvement of the
source program can refer to several different
characteristics of the resulting code, such as portability,
size, energy consumption, or time of execution, among
others.

The structure of a compiler is usually divided into three
sections or phases, namely: Frontend, optimizer and
backend. A three phase compiler structure is presented
in Figure 1. Each phase usually includes several sub-
phases.

Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012. 33

3.1. Frontend
The goal of the frontend phase of a compiler is to
transform the source code into some sort of
intermediate representation (IR). An intermediate
representation is a machine independent
representation of the source program. The frontend
phase is considered to be composed of the following
phases:

 Lexical analysis: The text of the source program
is divided in words or tokens and every word is
categorized as a generic symbol in the
programming language, e.g. a variable name, an
identifier, a type of variable, etc.

 Syntax analysis: This phase takes the list of
tokens produced in the lexical analysis pass and
arranges them in a structure called parse tree
that reflects the structure of the program.

 Type checking: This phase analyzes whether the
program violates certain requirements such as
declaring a variable more than once, assigning a
boolean value to a string variable, etc.

 Intermediate representation generation: The
main goal of this phase is to create a machine
independent representation of the program. It
can take different forms, such as a tree, a graph,
or code.

3.2. Optimization
The intermediate representation of a program is
transformed to produce an optimized version of it.
Usually, each optimization technique is applied
independently, which means that the intermediate

representation of the program may be passed several
times through the optimizer. Compilers which
determine how to transform the code to run faster or
consume fewer resources are known as optimized
compilers. The goal of optimized compilers is to
perform one or more safe and profitable
transformations on the intermediate representation,
preserving the results and the meaning of the program
[9], [6]. Current advanced processors are dependent on
the compilers to design the object code for the optimal
performance. The GCC compiler consists of an
intermediate language which is transformed by an
independent representation of the program [9].

3.3. Backend
The goal of the backend phase is to take the
intermediate representation of a program and produce
machine code. This section is composed of the
following phases:

 Register allocation: In this pass, symbolic
variable names used in the intermediate code
are assigned a register in the target machine
code.

 Machine code generation: This is the phase that
actually produces assembly code for a specific
machine architecture.

 Assembly and linking: The assembly-language
code generated in the previous pass is translated
into a binary representation. Also, addresses of
variables, functions, etc., are determined.

Frontend Optimizer Backend

Target
program

Source
program

Compiler

IR IR

Fig. 1. Compiler structure

It is important to clarify that, although the term
optimization implies that an optimal solution is found for
a particular problem, compilers in practice face
problems that cannot be solved optimally. Therefore,
compilers aim to improve the source code in a safe and
profitable way [8]. For a compiler to apply any
optimization technique to a program, it must do the
following three things [10]:

 Decide what section of a program to optimize
and the particular transformation to apply.

 Verify that the transformation will preserve the
semantics of the source program.

 Transform the program

Compiler optimization techniques can be machine
dependent or machine independent. Machine
dependent optimizations depend on the specific
hardware in which the translated program is intended to
be executed. On the other hand, machine independent

optimizations do not depend on a particular computing
system or a type of implementation [11].

4. EXPERIMENTAL SETUP
For our experiments we used two machines, namely
Machines A and C which are described in Table 1. In
order to perform comparisons, we compiled and ran the
SPEC CPU2006 benchmarks in machine A –the
machine with the most modern hardware, using GCC’s
generic optimization levels O0, O1, O2 and O3 [12].
GCC’s optimization levels include different optimization
techniques that are performed during compilation time.
Table 2 presents the set of options applied for each
GCC’s optimization level [13].

For each one of the optimization levels we computed
the geometric mean among all the workload speedups
and, according to it, we identified the best optimization
level. Unsurprisingly, as shown in table 3, the best
results were obtained from the standardized

Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012. 34

optimization level O3. Later, we appended to the best
optimization level found (i.e. O3), the mtune compiler
parameter which tries to optimize the code produced by
GCC for a specific processor (i.e. with the mtune
parameter, GCC tries to perform machine dependent
optimizations) [14]. Therefore, for Machine A we
appended the parameter mtune=corei7 to the SPEC’s
Optimize configuration flags, and then we executed the
resulting binary files. From now on, we identify these
binary files as the mtuned binary files or mtuned
programs and correspond to programs resulting from a
compilation process that uses the optimization
parameters O3 and mtune according to each target
machine (i.e. mtune=i7 for Machine A and
mtune=Pentium4 for Machine C).

Although the use of the mtune configuration parameter
when compiling any source code doesn’t decrease the
portability of the programs, it aims to increase the
performance of the program execution when it is run in
the processor specified with the mtune parameter [14].
Consequently, since we are running the mtuned binary
files in machines with the same processors that were

established for the mtune parameter, we expected to
achieve a more significant improvement for our mtuned
programs than the improvement we found in the
previous execution of the benchmarks with only the O0,
O1, O2 and O3 optimization levels.

Since Machine A’s processor is clearly much more
modern and powerful than Machine C’s processor,
comparing the results obtained when compiling using
an optimization level in Machine A directly against the
results obtained when compiling using the same
optimization level in Machine C does not make sense.
Instead, our purpose is to compare the relative
differences between compiling in Machine A against
the difference obtained when compiling in Machine C.
Thus, once we ran the mtuned benchmarks in Machine
A, we compiled and ran the benchmarks in Machine C
using the O0 optimization level and later using the best
compilation level found for Machine A (i.e. level O3)
with the mtune parameter set to match the specific
processor of Machine C (i.e. Pentium 4).

Table 1. Systems’ specifications

 Machine A Machine C

CPU Name Intel core i7 – 2630QM Intel P4

CPU MHz 2000 2400

FPU Floating point unit Integrated

CPUs enabled 4 cores, 1 chip, 4 cores/chip, 8
threads/core

1 core, 1 chip, 1 core/chip

Primary cache 32 KB I + 32 KB D on chip per
core

64 KB I + 64 KB D on chip
per chip

Secondary cache 256 KB I+D on chip per core 512 KB I+D on chip per chip

Level 3 cache 8 MB I+D on chip per chip None

Other cache None None

Memory 4 GB 4 GB

Disk subsystem SATA IDE

Operating
system

Linux (Ubuntu 11.10) Linux (CentOS 5)

Compiler GCC 4.6.1 (gcc, g++, gfortran) GCC 4.6.1 (gcc, g++,
gfortran)

The results are presented in Table 4. After running the
benchmarks in both machines, we compared the
differences between the obtained O0 and mtuned (i.e.
O3 + mtune) results of each machine separately. We
expected the differences to be smaller for Machine C,

than for machine A, and consequently show that GCC
has become a better architecture specific optimizer
over the last decade.

Table 2. GCC’s optimization options

GCC’S
OPTIMIZATION

LEVEL
INCLUDED OPTIMIZATION TECHNIQUES

O0 No options enabled.

O1

Combination of increments or decrements of addresses with memory accesses, reduction of
scheduling dependencies, dead code elimination, avoidance of popping the arguments to each
function call as soon as that function returns, reordering of instructions to exploit instruction slots
available after delayed branch instructions, dead store elimination, guess branch probabilities,
transformation of conditional jumps into branch-less equivalents, discovery of functions that are
pure or constant, perform interprocedural profile propagation, merge identical constants, loop
header copying on trees, constant/copy propagation, redundancy elimination, range propagation,
expression simplification, hoisting of loads from conditional pointers on trees, scalar replacement
of aggregates and temporary expression replacement during SSA.

O2
All the options of O1, and also performs: contained branch redirections, alignment of the start of
functions, alignment of branch targets, alignment of loops, alignment of labels, cross-jumping
transformation, common subexpression elimination, convert calls to virtual functions to direct

Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012.

35

GCC’S
OPTIMIZATION

LEVEL
INCLUDED OPTIMIZATION TECHNIQUES

calls, function inlining, interprocedural scalar replacement of aggregates, removal of unused
parameters, replacement of parameters passed by reference by parameters passed by value,
enable peephole optimizations, reassignment of register numbers in move instructions and as
operands of other simple, reordering of basic blocks in the compiled function in order to reduce
number of taken branches and improve code locality, reordering of functions in the object file in
order to improve code locality, schedule instructions across basic blocks, allow speculative motion
of non-load instructions, reordering of instructions to eliminate execution stalls and conversion of
simple initializations in a switch to initializations from a scalar array, value range propagation.

O3
All the options of O2 and also performs: movement of branches with loop invariant conditions out
of the loop, predictive commoning optimization, loop vectorization on trees and function cloning to
make interprocedural constant propagation stronger.

5. RESULTS
In order to keep the variables to a minimum for
meaningful comparison, we focused only on the Integer
suite of the SPEC CPU2006 bechmarks. Our initial
assumption was that GCC would become stronger at
optimizing for later model processors using the mtune
parameter, accepting as a given that during ten years
of development (the amount of time lapse from the
oldest P4 processor to the newest i7 quad core
production) tuning skills would have been improved.

Our assumptions were predominantly wrong with
several exceptions. But the exceptions alone proved to
be interesting to our initial assumptions.

In computer architecture terminology, the term
Speedup is defined as [15]:

Most of the tests performed within a narrow range of
median performance speedup. In other words, when
we normalized each tests performance with the oldest
processor’s baseline we found that the later model
processor showed a fairly consistent speedup across
the board without varying greatly from the base
normalized mean. Tuning increased the performance
nearly across the board within a discrete range. Tables
3 and 4, show the obtained results for machines A and
C respectively. Shown ratios are compared to the

SPEC’s 2006 benchmarks reference machine. For
simplicity, only the geometric mean values after
executing all the different benchmarks are presented.
However, more detailed data are presented in Figures
2 and 3, which show the obtained results for machines
C and A respectively. Shown ratios are compared to
machine C. Data corresponding to machine C are
presented first, because Machine A speedup ratios
shown in Figure 3 are relative to Machine C’s O0
results.

Unfortunately for our assumptions, the mtune
optimization coupled with the best performance
optimization (O3) on average produced a very small
performance increase when compared to generic O3
optimization by itself. We had initially theorized that
this gap, the gap between performance of the best
generic optimization (O3) and the best generic
optimization combined with specific processor
optimization (mtune), would widen on the later model
processors. With one major exception, this did not
occur. Consequently, it seems from the results we
obtained, that GCC’s developments are not very
focused on per processor tuning and consequently, in
general, users should not expect a significant
improvement by configuring GCC to produce optimized
code for a specific hardware. Furthermore, sometimes
such code may be less efficient than a code that has
been compiled for generic hardware.

Table 3. Optimization on Core I7 using SPEC CPU 2006 Benchmarks

Core i7

O0 O3 O3 -mtune=corei7

Seconds Ratio Seconds Ratio Seconds Ratio

Geometric
Mean

892.73 11.33 436.97 23.13 428.57 23.57

Table 4. Optimization on Pentium 4 using SPEC CPU 2006 Benchmarks

Pentium 4

O0 O3
O3 –mtune =

pentium4

Seconds Ratio Seconds Ratio Seconds Ratio

Geometric
Mean

2912.71 3.48 1858.88 5.44 1976.18 5.12

Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012. 36

Detailed examination of the instrumentation readout
provided insights into the most prevalent phenomena
(i.e. the overall increase in processor throughput over
the last ten years). Although this is of course, highly
predictable; what was surprising is the most
predominant reason for it as shown by detailed
instrumentation readout. The processors have similar
overall clock speeds. In fact, the Machine A’s processor
has a slightly slower clock speed than Machine C.
However predictably, the later processors have multiple
cores, larger caches and faster IO (bus speed and hard
drive technology). Surprisingly, the most dominant
factor in overall speed gains appears to be major page
faults.

Fig. 2. Normalized Ratios and Runtime on Pentium4

using SPEC CPU 2006 Benchmarks

Fig. 3. Normalized Ratios and Runtime on Core I7 using

SPEC CPU 2006 Benchmarks

There are two types of page faults: minor and major.
From figures 4 and 5, it is clear that minor page faults
increase with the later processors and major page
faults decrease. Exploring this phenomenon a little
further, we can determine this makes sense. The oldest
processor is a single core processor with a single L2
Translation Look-aside Buffer (TLB). Minor page faults
will only occur on this machine when another process
makes use of a particular page referenced in this table.
However on the multicore machines - which currently
do not have a shared last level TLB minor page faults
can occur whenever a thread is spawned from the
same process on a different core. Hence, the more
cores not sharing the TLB, the more minor page faults.
However, this is inconsequential as an overall indicator
of speed since the virtual pages are still in memory;
they are simply not marked in the memory
management unit as loaded. This 'soft page' fault is
easily fixed and does not create a large performance
hit.

Fig. 4. Comparing minor Page faults between both

machines

From Figure 4 we can see that the minor page faults
are more for Machine A when compared to Machine C.
O3-mtune has less number of minor faults when
compared to the -O3 optimization. Nevertheless, Figure
5 shows that major faults are less for Machine A than
for Machine C. It can also be noticed that after tuning,
the major page faults are reduced in Machine C. In
both processors the tuning helps in reducing the
number of page faults.

Statistics related to major page faults are presented in
Figure 5. Looking at the normalized numbers, we can
see that decreased major page faults are easily
attributable as a large part of the later systems' overall
performance increase. It can be argued that this one
statistic alone is responsible for between 46 - 91
percent of the overall system performance gains. We
say, 'it can be argued' because even though these
numbers are normalized, we do not have exact
indicators as to the performance cost of a page fault vs

0

0,5

1

1,5

2

2,5

3

3,5

O0 O3 O3 -mtune=generic

0

1

2

3

4

5

6

7

O0 O3 O3 -mtune=corei7

0

20000000

40000000

60000000

80000000

100000000

120000000

Pentium 4 Core i7

Minor Page Faults

O3 -mtune O0

Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012. 37

the performance cost of another slow down e.g. cache
misses. However, we do know that page faults are
probably the single biggest performance slow down in a
system due to the IO time required to retrieve a page
from disk.

Bearing in mind the foundations presented in the
previously exposed points, we now focus on analyzing
the results presented in Figure 3. Figure 3 presents the
speedup ratios relative to those of Machine C, which
were present in Figure 2. The interesting tests were:
403.gcc, 462.libquantum, 473.astar, 429.mcf. These 4
out of 12 benchmarks displayed anomalies outside the
normal range of speedups shown by the majority. The
fourth one displays an across the board speedup nearly
double that of the normal range. And more interesting
still, are the other three which we believe indicate a
fundamental difference in the way GCC tunes for later
processors.

Fig. 5. Comparing major Page faults between both

machines

First, we will discuss the fourth test, which does not
indicate a better tuning strategy on the part of GCC
developers, but does show the largest across the board
performance increase (over 6x speedup for Machine A
when compared to Machine C; these speedups
occurred on all three SPEC INT tuning tests –O0
baseline, -O3 and –O3 tuned for the processor). The
test was the 429.mcf test which revolves around
combinatorial analysis. The nature of the test,
predictable branching and a high level of locality – both
spatial and temporal, allows it to maximize the greatest

improvements of the newer processor. This is also
shown in Figure 6, the test has less basic blocks and a
much higher percentage of them are accessed over
1000x when compared to the other tests indicating that
stronger caching mechanisms will produce much better
results.

The other three tests that exhibit anomalies are of
greater interest. The first, 403.GCC shows a huge
normalized improvement with the O3 optimization, but
a marked decrease in performance when using the O3
tuning coupled with the specific processor tuning.
Figure 7 shows basic blocks counting for this
benchmark. Although we were unable to determine a
reason for the decreased performance for mtuned later
processors, the huge increase in the O3 performance
appears to be at least partially due to loop unrolling
(note the decrease in all block numbers for O3 tuning in
Figure 7).

The second, 462.libquantum which simulates a
quantum computer, also shows a relatively huge O3
optimization gain on the newer processors, but this
time the specific processor tuning is more in line with
the rest of the tests which means it is either about the
same as the O3 alone, or slightly better. However, in
this test, loop unrolling does not appear to be as much
of a factor. We mention the anomaly simply because it
is apparent in the raw data, but were unable to draw
any firm conclusions based upon the data at hand.

And finally, the third test and by far the most interesting
for our initial hypothesis, is the 473.astar test which
revolves around path-finding algorithms. This was the
only one test where our hypothesis proved correct as
shown in Figure 3. Specific processor tuning (mtune)
for GCC showed big performance increases relative to
baseline and O3 testing for the dual core processor and
huge increases for the i7. Path finding algorithms
revolve around recursive coding which is highly thread-
able. Each of the later processors has an increasing
amount of hardware threads when compared to
Machine C. The basic blocks for this test are not
modified greatly during the O3 optimization stage so
loop unrolling does not produce a sizable performance
gain, however the mtune tests show slight gains in the
dual core which is capable of spawning 4 simultaneous
hardware threads and huge gains when placed on the
highly threaded quad core processor.

0

20

40

60

80

100

120

140

160

Pentium 4 Core i7

Major Page Faults

O3 -mtune O0

Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012.

38

Fig. 6. Basic blocks using 429.mcf Benchmark

Fig. 7. Basic blocks using 403.GCC Benchmark

6. FUTURE WORK
In order to firm up our conclusion, the benchmarks
should be run against later model computers containing
processors with different hardware threading
capabilities, ideally two (one of each) with 16 hardware
threads, two with 8 hardware threads and two with 4
threads. The number of cores and cache sizes should
remain the same for each pair in order to eliminate
other possible variables. The tests should then be
normalized to the original P4 (2 thread) processor run.
If our conclusions are correct, we should see normal
improvements in O3 level optimization, but ever
increasing improvements in the mtune optimization
speed.

7. CONCLUSIONS

It appears GCC developers have done very little
optimization development for specific processors. We
believe this is due to the large number of possible
processors in the market and the fact that tuning for
each individual processor would be an arduous process

at best. Further testing on an array of the latest, highly
threaded processors would be necessary to concretely
declare this as a truth.

REFERENCIAS

[1] M. Stephenson, S. Amarasinghe, M. Martin and U.-M.
O'Reilly, "Meta optimization: improving compiler
heuristics with machine learning," in PLDI '03
Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation,

New York, 2003.

[2] Standard Performance Evaluation Corporation,
"SPEC's Benchmarks and Published Results". Online
[September. 2011].

[3] Standard Performance Evaluation Corporation, "SPEC
CPU2006 Benchmark Descriptions". Online
[September. 2011].

[4] K. Hoste and L. Eeckhout, "Cole: compiler optimization
level exploration" in CGO '08 Proceedings of the 6th
annual IEEE/ACM international symposium on Code
generation and optimization, 2008.

Total blocks Not executed
Executed more
than thousand

times
Blocks executed

Number of code
lines

O0 419 88 237 321 545

O3 -mtune 381 76 226 296 521

0

100

200

300

400

500

600

Total blocks Not executed
Executed more
than thousand

times

Blocks
executed

Number of
code lines

O0 155738 90109 46992 65616 70643

O3 -mtune 141378 86718 39676 54656 63027

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

http://groups.csail.mit.edu/commit/papers/03/metaopt-pldi.pdf
http://groups.csail.mit.edu/commit/papers/03/metaopt-pldi.pdf
http://www.spec.org/benchmarks.html
http://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf
http://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf
http://dl.acm.org/citation.cfm?id=1356080
http://dl.acm.org/citation.cfm?id=1356080

Ing. USBMed, Vol. 3, No. 2, Julio-Diciembre 2012

R. D. Escobar, A. R. Angula & M. Corsi. “Evaluation of GCC Optimization Parameters”.
Ing. USBMed, Vol. 3, No. 2, pp. 31-39. ISSN: 2027-5846. Julio-Diciembre, 2012. 39

[5] Standard Performance Evaluation Corporation, "SPEC
CPU2006" Online [September. 2011].

[6] Wind River Systems, "Advanced compiler optimization
techniques" April 2002. Online [December. 2012].

[7] D. Edelsohn, W. Gellerich, M. Hagog, D. Naishlos, M.
Namolaru, E. Pasch, H. Penner, U. Weigand and A.
Zaks, "Contributions to the GNU Compiler Collection"
IBM Systems Journal, vol. 44, no. 2, p. 2005, 259-278.

[8] L. Torczon and K. Cooper, Engineering a Compiler,
San Francisco, CA: Morgan Kaufmann Publishers Inc.,
2007.

[9] W. v. Hagen, The Definitive Guide to GCC, Second
Edition ed., Berkeley, CA: Apress, 2006.

[10] D. F. Bacon, S. L. Graham and O. J. Sharp, "Compiler
transformations for high-performance computing" ACM
Computing Surveys (CSUR), vol. 26, no. 4, pp. 345-
420, 1994.

[11] P. B. Schneck, "A survey of compiler optimization
techniques" in ACM '73 Proceedings of the ACM
annual conference, 1973.

[12] T. Jones, "Optimization in GCC" January 2005. Online
[December. 2012].

[13] The GNU Compiler Collection Team, "Options That
Control Optimization" Online [October. 2011].

[14] The GNU Compiler Collection Team, "i386 and x86-64
Options – Using the GNU Compiler Collection" Online
[October. 2011].

[15] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach 4 Ed, San
Francisco, CA: Morgan Kaufmann Publishers Inc.,
2006.

http://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf
http://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf
http://http/www.embedded.com/electronics-products/electronic-product-reviews/embedded-tools/4086427/Advanced-Compiler-Optimization-Techniques
http://http/www.embedded.com/electronics-products/electronic-product-reviews/embedded-tools/4086427/Advanced-Compiler-Optimization-Techniques
http://domino.research.ibm.com/tchjr/journalindex.nsf/2733206779564b3d85256bd500483abf/8c951f46bfa7c04885256ff800674810!OpenDocument
http://dl.acm.org/citation.cfm?id=1526330
http://dl.acm.org/citation.cfm?id=1526330
http://sensperiodit.files.wordpress.com/2011/04/hagen-the-definitive-guide-to-gcc-2e-apress-2006.pdf
http://pages.cs.wisc.edu/~fischer/cs701.f00/surveys.Dec94.pdf
http://pages.cs.wisc.edu/~fischer/cs701.f00/surveys.Dec94.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730021416_1973021416.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730021416_1973021416.pdf
http://www.linuxjournal.com/article/7269
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/i386-and-x86_002d64-Options.html
http://gcc.gnu.org/onlinedocs/gcc/i386-and-x86_002d64-Options.html
http://www.amazon.com/Computer-Architecture-Quantitative-Approach-Edition/dp/0123704901
http://www.amazon.com/Computer-Architecture-Quantitative-Approach-Edition/dp/0123704901

