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Resumen. Las enfermedades neurodegenerativas afectan el sistema neuromuscu-
loesquelético generando trastornos del movimiento. La detección de los síntomas
suele producirse en las últimas fases de la enfermedad, por lo que una detección
temprana ayudaría a introducir terapias para reducir los efectos de las enfermedades
y retrasar el deterioro. La base de datos PhysioNet proporciona información sobre
la biomecánica de la marcha de voluntarios sanos y de pacientes de Parkinson (PD),
esclerosis lateral amiotrófica (ALS) y Huntington (HD). En este trabajo se utilizan
datos espacio-temporales para medir el coste energético y la densidad espectral de
potencia en esas patologías. Estos parámetros se analizaron estadísticamente para
definir descriptores explicativos. Posteriormente, se utilizan la técnica fuzzy c-means,
algoritmo de aprendizaje para el análisis de datos multivariados - LAMDA, y redes
neuronales para clasificar entre las enfermedades neurodegenerativas y el grupo de
control. Se utilizó el método de validación cruzada para evaluar los resultados del
algoritmo de clasificación. El análisis estadístico mostró que el coste de la energía
aumentaba en la fase de apoyo, la velocidad de la marcha disminuía en condiciones
críticas de la enfermedad y la cadencia era diferente según el tipo de enfermedad.
Se entrenaron los algoritmos con cuatro clases a priori. Los ajustes de clasificación
fueron 92.5% para la red neuronal, 80% para el método LAMDA, y 56.1% para el
Fuzzy C-means. Para mejorar los resultados, se entrenaron clasificadores de dos-clases:
Ctrl+PD, Ctrl+PD y Ctrl+HD. El emparejamiento mejoró el ajuste de LAMDA a un
98.3%, la red neuronal con un 97.0% y Fuzzy C-means con un 90.2%. El uso potencial
de estas técnicas de clasificación permitirá la detección temprana de enfermedades
neurodegenerativas, incluyendo nuevos dispositivos que permitan el análisis de la marcha.

Palabras Clave. Enfermedades Neurodegenerativas, Redes Neuronales, Fuzzy
C-means, Análisis de datos multivariantes, Aprendizaje automático.

Abstract. Neurodegenerative diseases affect the neuromusculoskeletal system
generating movement disorders. The detection of symptoms usually occurs in the
late stages of the disease, thus early detection would help to introduce therapies
for reducing the effects of the diseases and delay deterioration. PhysioNet database
provides information on gait biomechanics of healthy volunteers and patients with
Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Huntington’s
disease (HD). In this work, spatio-temporal data are used to measure the energy cost
and power spectral density in these pathologies. These parameters were statistically
analyzed to define explanatory descriptors. Subsequently, fuzzy c-means techniques,
learning algorithm for multivariate data analysis - LAMDA, and neural networks
are used to classify between the neurodegenerative diseases and the control group.
Cross-validation method was used to evaluate the results of the classification algorithm.
Statistical analysis showed that energy cost increased in the support phase, gait
speed decreased in critical disease conditions, and cadence was different according to
disease type. Algorithms were trained with four classes. The classification fits were
92.5% for the neural network, 80% for the LAMDA method, and 56.1% for the Fuzzy
C-means. In order to improve the results, two-class classifiers were trained: Ctrl+PD,
Ctrl+PD and Ctrl+HD. This matching improved the fit of LAMDA to 98.3%, the
neural network with 97.0% and Fuzzy C-means with 90.2%. The potential use of these
classification techniques will enable early detection of neurodegenerative diseases,
including new devices that allow gait analysis outside the laboratory.

Keywords. Neurodegenerative Diseases, Fuzzy C-means, Neural Networks, Multi-
variate Data Analysis, Machine Learning.
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Nomenclature
Fuzzy C-Means (FCM), Neural Networks (NN), Sup-
port Vector Machines (SVM), Neurodegenerative Dis-
eases (ND), Parkinson Diseases (PD), Huntington Dis-
eases (HD), Alzheimer Diseases (AD), Amyotrophic
Lateral Sclerosis (ALS), Control (Ctrl).

I. Introduction
Neurodegenerative diseases are progressive disorders
characterized by an accelerated degeneration of neu-
rons, causing limitations on speech, memory, move-
ment, and balance [1]–[3]. Examples of neurodegenera-
tive diseases include Parkinson’s (PD), Huntington’s
(HD), Alzheimer’s (AD) diseases, and Amyotrophic
Lateral Sclerosis (ALS).

Symptoms like impaired balance and coordination
are common inParkinson’sdisease (PD) [4]. Amyotrophic
Lateral Sclerosis (ALS) damages the neuromotor sys-
tem resulting in motor dysfunction and muscle weak-
ness [5]. Huntington’s disease (HD) is characterized by
fast, sudden and uncontrollable facial movements, spas-
modic movements, bradykinesia and an unstable gait [6].
All these symptoms considerably affect the person gait
patterns, affecting their quality of life [7].

The human gait has been analyzed to find repeti-
tive patterns caused by neurodegenerative diseases and
to provide an early diagnosis. Melo Roiz et al. on
[8] analyzed the spatial-temporal gait parameters of
subjects with PD and compared them with a healthy
group (Ctrl). Significant differences were detected be-
tween PD and Ctrl groups for speed and stride length,
the initial contact, and the maximum extension in the
terminal contact of heel, as well as in the maximum
flexion degree in the middle swing phase. A similar
statistical study was conducted by Sofuwa et al. on
[9]. They found a significant reduction in gait length,
gait speed, and ankle and hip force. Delval et al. on
[10] discovered akinesia on the gait initiation cycle and
a reduction in the range of joint angles movement for
Huntington’s disease.

The gait characteristics detection can help in the
early diagnosis of neurodegenerative diseases, improv-
ing the decision making for medication, treatment plans,
and adaptation of a new lifestyle [11]. Automatic clas-
sification techniques have been used to diagnose neu-
rodegenerative diseases before their onset. Bilgin [12]
presents the use of discrete Wavelet transform to extract
six frequency bands from foot force signals, then he used
the Bayesian Naïve and discriminant analysis technique
to classify PD, ALS, HD, and Ctrl groups, achieving a
maximum classification fit of 90.93%. On [13] four clas-
sification techniques were implemented: the Support
Vector Machines (SVM), Random Forest, Multilayer
Perceptron and the K Nearest Neighbor. The highest-
accuracy classification rate between healthy and neu-

rodegenerative diseases groups was 96.83%, achieved by
using SVM. Similarly, in [14] the extra trees method
and convolutional neural networks were additionally in-
cluded, however the best accuracy was achieved with the
K Nearest Neighbor method. Another example is pre-
sented in [15], which shows that uses of radial function
neural networks have been able to classify 93.75%. The
star (K*) and Multilayer Perceptron machine learning
algorithms were used to classify between PD+ALS+HD
achieving accuracies on the order of 96.0% [16]. By ap-
plying techniques such as nearest neighbor, decision tree,
random forest, adaptive boosting, and naïve Bayes, pa-
tients were classified with neuromusculoskeletal gag [17].

Literature reveals multiple algorithms used for clas-
sification of neurodegenerative diseases; however, ac-
cording to our knowledge, this is the first study to use
an estimation of energy consumption and power spec-
tral density of spatiotemporal gait data as explanatory
descriptors of neurodegenerative gait. In addition, the
present study explores the use of two-class classifiers
to improve classification accuracy. The objective of
this work is to evaluate the effectiveness of machine
learning algorithms using two-class classifiers to iden-
tify neurodegenerative diseases using clinical informa-
tion, sociodemographic data, and gait biomechanics.

II. Methods
We used StatgraphicsTM software to perform the sta-
tistical analysis. MatlaTM was used for training the
Fuzzy C-Means (FCM) and Neural Networks (NN) clas-
sification techniques. The Learning Algorithm for Mul-
tivariate Data Analysis (LAMDA) was trained with
the SALSA toolbox software [18].
A. Database
Database available on PhysioNet.org [19] was used. Six-
ty-four subjects were recruited: 15 PD, 20 HD, 13 ALS
and 16 Ctrl. Resistive force sensors located in their shoes
were sampled at 300 Hz with a resolution of 12 bits [20].
The temporal gait parameters were presented on [21].

The database has 20 variables: seven temporal, one
spatial, five variables in percentage and six partici-
pants’ attributes. Gait parameters were recorded for
5 minutes. Additionally, two new variables were es-
timated: body mass index (BMI) using weight and
height (BMI = W/H2) and cadence (Cd) using stride
time (C= 120/Tst). These data were statistically ana-
lyzed in section 3.2 to define a descriptor vector X.
B. Classification Algorithms
The FCM algorithm is based on Picard iteration [22]
to minimizes the functional C-means (1) described by
Dunn in [23].

J
(
X;U,V

)
=

c∑
k=1

N∑
i=1

µm
ik∥xi −vk∥2 (1)
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Variable X corresponds to the data vector, xi is
a i-th data vector (for each patient i) which has the
value of a selected descriptor. U is a partition ma-
trix, µik is a i-th membership degree of a k-th cluster.
V ∈ R is a prototype cluster matrix where c is the clus-
ter size. The distance ∥xi − vk∥2 is a data quadratic
distances to the center. The m parameter is the fuzzi-
ness degree. The algorithm stops when the difference
between membership degrees of one iteration and the
next one is lower than the tolerance (ε).

The LAMDA method was proposed by Aguilar [18].
This technique is based on fuzzy logic allowing to use
quantitative or qualitative descriptors. The classifier
admits multiple work modes, the unsupervised and su-
pervised learning, passive recognition, and active learn-
ing. The function showed in (2) include a Marginal Ad-
equacy Degree (M) and a Global Adequacy Degree (G)
parameter. On unsupervised learning, a Non-Inform-
ative Class is generated which could be converted into
a new class. The M is the association of descriptors Xn

with objects MN relative to a specific class CJ . The
G function evaluates association of objects MN com-
pared to all classes. Finally, the max values of G are
calculated. The α value is the exigence index, which
manipulates the quantity of classes.

G
(
X|k

)
= α(M(x1|k), . . . ,M(xi|k))
+(1−α)(M(x1|k), . . . ,M(xi|k))

(2)

The NN uses an interconnected group of neurons
and nodes. The machine learning is achieved when
the cost function (C (w,b) = 1

2N

∑
x

∥y(x)−a∥2) is min-

imized (3). The technique uses several layers (gi) to
describe the neuron interconnection; moreover, a set
of weights (wi) was defined to represent the intercon-
nection strength between neurons. Each node uses an
activation function (f) usually, the sigmoid function.

y
(
X
)

= f

(
N∑
i

wigi(X)

)
(3)

Parameter w denotes weights, b is the bias, N is
the training examples, a represents the activation out-
put vector produced by each input x and y variable
represents desired outputs.

The cross-validation was the technique used to eval-
uate the performance of the machine learning model.
A 15-fold cross-validation procedure involved dividing
the data into 15 equal parts, using each partition as
test set once and the other 14 partitions used as the
training set. Repeating this process fifteen times, en-
suring that each part is used as the test set exactly
once. Having completed this process and average is
performed with the evaluation metrics obtained in each
of the fifteen iterations in order to obtain an overall
measure of the model’s performance.

C. Data analysis
1) Statistical analysis
To identify gait characteristics and extract information
that could be useful to define descriptors, a statistical
analysis of gait data was performed. Four groups or
classes were described a priori: Ctrl, PD, ALS, and
HD. A cluster analysis was conducted by using the
Ward’s linkage method, while the city-block distance
metric [24] was used to determine data cohesion within
each group. The statistical analysis confirmed the four
classes defined a priori, however the HD and ALS groups
overlapped, possibly due to high data variability.

Table 1 shows the mean and standard deviation of
some sociodemographic and gait parameters. Differ-
ences between groups mean age was found (p > 0.05).
No statistically significant difference was found between
the number of recruited women and men (p > 0.05).
Using the ANOVA test, a statistically significant dif-
ference was found between the cadence standard de-
viation (SD) within groups (F -ratio = 6.35 and p =
0.0009), and similarly for swing phase SD (F -ratio =
10.12 with p = 0.00001). Using the Kruskal-Wallis test
[25], a significant difference of SD median gait speed,
stride time, and double support time was found.

The ALS and HD data presented a high dispersion,
producing overlaps between the groups. Subjects with
differentiating elements such as advanced age, under-
weight and overweight had similar results to subjects
classified with neuromuscular disease. A hypothesis
test was performed for the mean value of stance and
swing phases in each lower extremity; however, no sig-
nificant differences were found (p-value ≤ 0.18). No
significant difference was observed between the power
calculated for each lower extremity in the swing and
stance phases (p-value ≤ 0.66). Power spectral den-
sity also showed no difference for each limb in the two
phases of gait (p-value ≤ 0.68). Statistically significant
differences in energy and power used during the stance
phase were observed for Control versus ALS, PD and
HD (p-value ≤ 0.012).

The variability of gait speed and cadence could
mean an increase in the energy expenditure of volun-
teers during gait (Table 1). Therefore, the energy cost
and power spectral density of the temporal signals of
the swing and stance phases of gait were calculated to
train the classification algorithms.
2) Descriptors selection
The descriptor vector

(
X
)

was composed by a geometric
mean of cadence (µCd), gait speed (µGS), swing time
(µSw), stance time (µSe), and stride time (µSt). The
standard deviation was calculated for cadence (σ2

Cd),
stride time (σ2

St), double stance (σ2
DS), double support

(σ2
St), and Swing-Stance times (σ2

SE).
Considering the effects of BMI on gait speed [26],

and dependence between gait speed and energy cost
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Table 1. Statistical analysis of the database. aBody Mass Index. bMeasurement of disease severity, normalized between 0 to 1

Classes Gender Age (years) BMIa Severityb Left swing
(%)

Right
stance (%)

Double
Support (%)

Cadence
(steps/min)

F M
Ctrl 14 2 39.3±18.5 19.8±2.7 0 36.1±1.7 64.3±1.81 28.2±2.7 110.1±7.9
HD 13 6 47.3±12.5 21.5±4.4 0.2±0.2 34.6±3.45 66.7±3.99 32±6.1 106.4±12.9
PD 5 10 66.8±10.9 21.7±2.79 0.7±0.2 33.2±2.48 67.3±3.71 34.2±5.1 108±10.7
ALS 2 8 55.1±11.9 25.6±5.6 0.2±0.2 32.7±2.74 67.8±2.57 37±9.2 91.8±12.1

[27], the estimation of energy (4) and power spectral
density (5) from spatiotemporal signals were consid-
ered to identify the signal change rates. These values
were obtained from temporal signals x(i) of the stance
and swing phases on each lower limb by sample N .

Ek =
N−1∑
i=0

|x(i)|2 ∆t (4)

Pi(ω) = 1
2π

∞∑
m=−∞

Rxx (m)e−jωm (5)

The descriptors (ESw, ESt) were estimated using
the average Energy produced by both lower limbs. A
similar procedure was performed for calculating Power
Spectral Density of the Swing phase and Stance phase
for both limbs (PSw, PSt). Finally, three more de-
scriptors were used as input information for classifier
algorithms: age (A), Body Mass Index (BMI), and
gender (G).

III. Results
A. Data pre-processing of volunteers
The database was refined to ensure consistent data.
Three people diagnosed with ALS and one person with
HD had neither weight nor gait speed records, there-
fore, these subjects were removed. Some of the tempo-
ral signals had outliers, which were also filtered. The
final database included 60 volunteers distributed as fol-
lows: 15 subjects with PD, 19 with HD, 10 with ALS
and 16 Ctrl.

The groups were unbalanced; therefore, five sub-
jects were randomly chosen for each group to train and
validate the classification techniques.
B. Fuzzy C-Means Algorithm
The database had groups with an unbalanced number
of subjects, i.e., Ctrl (16), PD (15), HD (19), and ALS
(10). Generally, the performance of machine learning
algorithms decreased with unbalanced classes. There-
fore, a random sample of five subjects per group was
chosen, resulting in two balanced populations of twenty
subjects for training and twenty for validation.

Four clusters were chosen a priori. Descriptor vector
(X) was composed by A, G, B, µC , µGS , and µSt. Using

a tolerance parameter ε = 1 × 10−6, a fuzziness weight
m = 2, and 800 algorithm iterations. The best classifi-
cation fit was 56.15% distributed as 62.5% for control
group, PD and ALS at 60.0%, and 42.1% for HD.

To achieve a better fit, the Fuzzy C-mean algorithm
was used with three two-class classifiers: Ctrl+PD,
Ctrl+ALS, and Ctrl+HD. To design the classification
algorithm a tolerance ε = 1 × 10−6, fuzziness weight
m = 4 and one-thousand iterations parameter were used.
The results of the cross-validation showed an increase
in the total classification fit of 90.2% (Table 2), calcu-
lated from the diagonal mean.
C. Neural Network Classification
The classification was performed using four a priori
chosen classes. Twenty random samples were selected
for training, having five samples per class. A matrix
including the training data and other twenty random
samples was used for validation. All values were nor-
malized including the class number: [0,0.25,0.5,0.75,1].

Using four classes chosen a priori, the neural net-
work was trained with three hidden layers and twenty
neurons, classified 92.5% of the data. 100% of volun-
teers with ALS and HD were correctly classified, how-
ever, two persons with PD were misclassified as ALS
and one Ctrl subject was classified as PD.

The use of two-class classifiers was evaluated to im-
prove the result. The neural network parameters were
chosen according to the size of the database and the re-
sults of the cross-validation. Three NNs with 3 hidden
layers and 20 neurons were trained to compare between
CtrlandPD,CtrlandALSandCtrlandHD.Table3shows
the average accuracy of 97.0% between classifier results.
D. Learning Algorithm for Multivariate Data
Analysis - LAMDA
The unsupervised LAMDA technique defined two new
subclasses to classify the Ctrl and PD groups, three
for the ALS, and five new subclasses for HD group.
The presence function used was ρx (1−ρ)1−x, the T-
norm & T-conorm was used to calculate the M pa-
rameter, and 0.8 as exigence index. Table 4 shows
the cross-validation results using one-class classifiers.
LAMDA correctly classified sixteen out of twenty vol-
unteers (80.0% accuracy).

Using a stringency index of 0.7 and the same pres-
ence function and M operator as in the previous case,

INGENIERÍAS USBMED | Vol. 14, N◦ 2 | JULIO–DICIEMBRE–2023 | MEDELLÍN-COLOMBIA | E-ISSN 2027-5846 11



π
A. M. Cárdenas, B. Gómez, L. C. Ealo & J. Uribe Pérez

Table 2. Fuzzy C-means technique using two-classes

Classes Classes
Ctrl+PD Ctrl+ALS Ctrl+HD

Ctrl+PD 85.7% 27.3% 27.3%
Ctrl+ALS 60% 94.1% 45.5%
Ctrl+HD 36.4% 62.5% 90.9%

Table 3. Confusion matrix using neural network technique with two-classes

Classes Classes
Ctrl+PD Ctrl+ALS Ctrl+HD

Ctrl+PD 98% 2% 0%
Ctrl+ALS 0% 100% 0%
Ctrl+HD 3% 4% 93%

Table 4. Confusion matrix of LAMDA technique using Matlab

Classes Classes
Ctrl PD ALS HD

Ctrl 100% 0% 0% 0%
PD 20% 80% 0% 0%
ALS 10% 30% 70% 0%
HD 30% 0% 0% 70%

LAMDA in passive recognition classification mode esti-
mated four classes from the descriptor dataset (Table
5). Three two-class LAMDA classifiers were trained:
Ctrl+PD, Ctrl+ALS and Ctrl+HD, achieving an aver-
age fit close to 98.4%.

IV. Discussion
In this study, we present three methods to classify neu-
rodegenerative diseases from gait information of sixty
subjects divided into Control, Parkinson’s disease, Amy-
otrophic Lateral Sclerosis, and Huntington’s disease.
The use of statistical analysis for descriptor definition
improves the performance of the machine learning al-
gorithms. Calculating energy cost and power spectral
density from temporal gait parameters decreases the
number of sensors used during motion capture. More-
over, these variables could describe gait patterns for the
detection of neurodegenerative diseases.

The statistical results were consistent with those al-
ready reported in the literature [8], [9], [28]. PD sever-
ity and the ALS are age-dependent [29]. There was a
positive correlation between the age and the standard
deviation of cadence (30.0%), swing phase (25.0%),
and support phase (25.0%). There was a 50.0% nega-
tive correlation between disease severity and gait speed.

The high variability of the data within the ALS
and HD classes resulted in data overlaps within and
between classes, which affected the fuzzy membership
matrix and the occurrence of local minima. Further-
more, the overlap was verified during LAMDA train-
ing, as eight new subclasses were found. These new
behavioral patterns were used by LAMDA to avoid
misclassification of diseases, improving the results up

to 98.33% (Figure 1). When comparing our results,
this technique improved performance compared to NN
(97.0%), Fuzzy C-means (90.23%) and other machine
learning techniques [13], [16], [17].

Figure 1. Performance between classification techniques

V. Conclusions
This paper proposes three methods to classify neurode-
generativediseasesusingdescriptorsfromgaitparameters
andgroupingthediseasewiththehealthycontrolpatients.

The statistical analysis allowed choosing appropri-
ate descriptors for gait parameters, revealing informa-
tion clinically significant for medical diagnosis.

Describing the energy and power spectral density
from spatiotemporal signals might decrease the amount
of measured data. Databases with a greater number of
patients should give results that are more accurate.

The best classification was achieved using three two-
class classifiers. The Fuzzy C-means achieved a fit
of 90.23%, the LAMDA fit was 96.66% and the NN
achieved 97.0%.
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Table 5. LAMDA technique outputs using paired classes: using SALSA software toolbox

Classes Classes
Ctrl+PD Ctrl+ALS Ctrl+HD

Ctrl+PD 100% 10% 40%
Ctrl+ALS 50% 100% 30%
Ctrl+HD 40% 40% 95%

Descriptors defined by statistical analysis allows to
apply lower cost algorithms, however it is necessary
to perform a longitudinal study for more complete ob-
servations, which will allow the development of more
accurate algorithms.

Although results were conclusive, it is not possi-
ble to generalize due to the small sample size. It is
suggested to increase the database and perform a lon-
gitudinal study to conduct a continuously feedback of
models and improve the classifications fit.

VI. Future Work
The future work will include the validation of the model
in patients with different stages of neurodegenerative
diseases, and including the severity of the disease as
a model outcome improving the early detection and
treatment of the disease. In future work, we propose
integrating the degree of disease severity into the mod-
eling process in order to achieve classifiers that give in-
formation on disease progression, with the subgroups
automatically created by LAMDA being could be use-
ful to solve this problem.
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