Simulación de un sistema de control de temperatura en un reactor de pirólisis de residuos plásticos urbanos - Simulation of a Temperature Control System in a Pyrolysis Reactor of Municipal Plastic Waste

Oscar Bellón Hernández, Edilberto Tovar Quiroz, Efrén Muñoz Prieto

Resumen


Este artículo describe un procedimiento realizado para simular una estrategia de control de temperatura en un reactor pirolítico, que contiene residuos plásticos urbanos de poliestireno. La obtención del modelo dinámico del proceso se hizo aplicando procesamiento de los datos suministrados, en las curvas de respuesta (termogramas), de los análisis termogravimétricos de muestras de poliestireno (EPS). El modelo de degradación térmica obtenido en forma de ecuación diferencial no lineal y un modelo dinámico de transferencia térmica en un reactor convencional, fueron los insumos para elaborar una simulación, a partir de la cual se examinó un controlador PID, en tiempo discreto. Durante la simulación se evaluó la potencia térmica aplicada, por unidad de masa de material degradado, para separar compuestos orgánicos volátiles y líquidos, que se empezaban a diferenciar en ciertos valores específicos de temperatura. Dichos productos que pueden sustituir combustibles fósiles y otros, son materias primas de alto valor en procesos industriales.

Palabras clave


Pirólisis de polímeros, análisis termogravimétrico, modelo dinámico, control de temperatura, Polymer pyrolysis, thermogravimetric analysis, dynamic model, temperature control.

Texto completo:

PDF

Referencias


C. M. López y J. R. L. Canepa, «Poliestireno expandido (EPS) y su problemática ambiental», Kuxulkab’, vol. 19, núm. 36, sep. 2014.

N. Hamidi, F. Tebyanian, R. Massoudi, y L. Whitesides, «Pyrolysis of Household Plastic Wastes», Br. J. Appl. Sci. Technol., vol. 3, núm. 3, p. n/a, 2013.

Adnan, J. Shah, y M. R. Jan, «Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts» J. Taiwan Inst. Chem. Eng.2014.

C. Vasile, M. A. Brebu, T. Karayildirim, J. Yanik, y H. Darie, «Feedstock recycling from plastic and thermoset fractions of used computers (I): pyrolysis», J. Mater. Cycles Waste Manag., vol. 8, núm. 2, pp. 99–108, 2006.

C. Martínez, C. Aarón, C. Campos, y L. D. Rosario, «Biodegradación de poliestireno utilizando microorganismos presentes en el humus de lombriz durante los meses, Octubre – Diciembre 2016», Univ. Lambayeque - UDL, may 2017.

T. Maharana, Y. S. Negi, y B. Mohanty, “Review Article: Recycling of Polystyrene”, Polym.-Plast. Technol. Eng., vol. 46, núm. 7, pp. 729–736, jul. 2007.

C. Areeprasert et al., “Municipal Plastic Waste Composition Study at Transfer Station of Bangkok and Possibility of its Energy Recovery by Pyrolysis”, Energy Procedia, vol. 107, pp. 222–226, feb. 2017.

N. Patni et al., “Alternate Strategies for Conversion of Waste Plastic to Fuels, Alternate Strategies for Conversion of Waste Plastic to Fuels”, Int. Sch. Res. Not. Int. Sch. Res. Not., vol. 2013, 2013, p. e902053, may 2013.

P. Shaohong et al., “Controlled Pyrolysis of Waste TV Housing Plastic Added Brominated Flame Retardants”, International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), 2011, pp. 2023–2026. 2011

J. Scheirs y W. Kaminsky, Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels. J. Wiley & Sons, 2006.

K. Naka y S. Konishi, “Design and fabrication of pyrolyzed polymer micro and nano structures”, en 2005 IEEE International Symposium on Micro-NanoMechatronics and Human Science , pp. 103–108. 2005

A. Undri et al., “Carbon from microwave assisted pyrolysis of waste tires”, J. Anal. Appl. Pyrolysis, vol. 104, pp. 396–404, nov. 2013.

M. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, y A. G. McDonald, “Evaluation of pyrolysis process parameters on polypropylene degradation products”, J. Anal. Appl. Pyrolysis.2015.

A. G. Gal’chenko, N. A. Khalturinskii, y A. A. Berlin, “High temperature pyrolysis of polymers”, Polym. Sci. USSR, vol. 22, núm. 1, pp. 15–22, 1980.

N. Miskolczi y R. Nagy, “Hydrocarbons obtained by waste plastic pyrolysis: Comparative analysis of decomposition described by different kinetic models”, Fuel Process. Technol., vol. 104, pp. 96–104, dic. 2012.

A. Niksiar, M. Sohrabi, y A. Rahimi, “A correction on a published kinetic model for tyre pyrolysis in a conical spouted bed reactor”, J. Anal. Appl. Pyrolysis, vol. 104, pp. 707–709, nov. 2013.

C. Lautenberger, “A Generalized Pyrolysis Model for Combustible Solids”, Combust. Process. Lab., dic. 2007.

J. Li, J. Gong, y S. I. Stoliarov, “Development of pyrolysis models for charring polymers”, Polym. Degrad. Stab., vol. 115, pp. 138–152, may 2015.

T.-A. Ngo, J. Kim, y S.-S. Kim, “Fast pyrolysis of palm kernel cake using a fluidized bed reactor: Design of experiment and characteristics of bio-oil”, J. Ind. Eng. Chem., vol. 19, núm. 1, pp. 137–143, ene. 2013.

A. Y. Snegirev, V. A. Talalov, V. V. Stepanov, y J. N. Harris, “Formal kinetics of polystyrene pyrolysis in non-oxidizing atmosphere”, Thermochim. Acta, vol. 548, pp. 17–26, nov. 2012.

G. Boyer, “Fully coupled CFD simulation of the pyrolysis of non-charring polymers: A predictive approach”, Fire Saf. J.2017

B. P. Bustamante, «La degradación de los plásticos», Rev. Univ. EAFIT, vol. 30, núm. 94, pp. 67–86, ago. 2012.

O. Bellón Hernández y E. Muñoz Prieto, «Procedimiento para Obtención de un Modelo Dinámico del Proceso de Pirólisis de Polímeros a Partir de los Datos de una Termogravimetría», en Congreso Internacional de Ingeniería Mecatrónica y Automática CIIMA 2016, Bucaramanga, Colombia, 2016.




DOI: http://dx.doi.org/10.21500/01247492.3435

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 Ingenium Revista de la facultad de ingeniería

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

 

ISSN:  0124-7492  

La Revista INGENIUM  proporciona acceso abierto a todos sus contenidos,  basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global de conocimiento,   así mismo, se adhiere a la licencia creative commons Atribución - NoComercial – SA  4.0 Internacional (CC BY - NC - SA)

Usted puede utilizar nuestros contenidos bajo los siguientes términos:

  • Atribución — Usted debe darle crédito a esta obra de manera adecuada, proporcionando un enlace a la licencia, e indicando si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo del licenciante.
  • NoComercial — Usted no puede hacer uso del material con fines comerciales.
  • SA —  El beneficiario de la licencia tiene el derecho de distribuir obras derivadas bajo una licencia idéntica a la licencia que regula la obra original.
  • Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • NonCommercial — You may not use the material for commercial purposes.
  • SA   —The beneficiary of the license has the right to distribute derivative works under a license identical to the license that regulates the original work.

 

https://creativecommons.org/licenses/by-nc-sa/4.0/