Dimensions

PlumX

How to Cite
O’Lery, M. de las M. (2024). Eliminative Reductions and the Reduction of Pre-Newtonian Shock Mechanics to Classical Mechanics. Revista Guillermo De Ockham, 22(2), 147–156. https://doi.org/10.21500/22563202.6987
License terms

The Revista Guillermo de Ockham provides an immediate and open access to its content, based on the principle of offering the public a free access to investigations to provide a global interchange of knowledge.
Unless otherwise established, the contents of this journal has a license with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • NonCommercial: You may not use the material for commercial purposes.
  • NoDerivatives: If you remix, transform, or build upon the material, you may not distribute the modified material.
  • No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Abstract

In this paper, we reflect on the concept of eliminative reduction proposed for physical theories (Gutschmidt, 2014). Our purpose is to defend that the formal characterization of the intertheoretical reduction proposed by the structuralist approach presents elucidatory advantages concerning classical analyses but still maintains a limitation at the moment of capturing an eliminative feature present in some cases of intertheoretical reduction. For this purpose, we consider the specific case of the reduction of pre-Newtonian collision mechanics to classical mechanics. This example of reduction has been widely studied by the structuralist approach and illustrates an eliminative feature that is not captured in the proposed reconstructions.

Keywords:

References

Balzer, W. (1982). Empirische Theorien: Modelle, strukturen, Beispiele. Vieweg.
Balzer, W. (1985). Incommensurability, reduction, and translation. Erkenntnis, 23(3), 255-267. https://doi.org/10.1007/BF00168293
Balzer, W., y Mühlhölzer, F. (1982). Klassische Stoßmechanik. Zeitschrift für Allgemeine Wissenschaftstheorie, 13, 22-39. https://doi.org/10.1007/BF01801183
Balzer, W., Moulines, C. U., y Sneed, J. D. (1987). An architectonic for science: The structuralist program. Reidel.
Batterman, R. (2002). The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence. Oxford University Press.
Bickle, J. (1998). Psychoneural reduction: The new wave. MIT Press.
Butterfield, J. (2011a). Emergence, reduction and supervenience: A varied landscape. Foundations of Physics, 41(6), 920-959. https://doi.org/10.48550/arXiv.1106.0704
Butterfield, J. (2011b). Less is different: Emergence and reduction reconciled. Foundations of Physics, 41(6), 1065-1135. https://doi.org/10.48550/arXiv.1106.0702
Butterfield, J. (2014). Reduction, emergence, and renormalization. Journal of Philosophy, 111(1), 5-49. https://doi.org/10.48550/arXiv.1406.4354
Dizadji-Bahmani, F., Frigg, R., y Hartmann, S. (2010). Who’s afraid of Nagelian reduction? Erkenntnis, 73(3), 393-412. https://doi.org/10.1007/s10670-010-9239-x
Gutschmidt, R. (2014). Reduction and the neighbourhood of theories: A new approach to the intertheoretic relations in physics. Journal for General Philosophy of Science, 45(1), 49-70. https://doi.org/10.1007/s10838-014-9240-1
Hooker, C. (1981a). Towards a general theory of reduction. Part I: historical and scientific setting. Dialogue, 20(1), 38-59. https://doi.org/10.1017/S0012217300023088
Hooker, C. (1981b). Towards a general theory of reduction. Part II: Identity in reduction. Dialogue, 20(2), 201-236. https://doi.org/10.1017/S0012217300023301
Hooker, C. (1981c). Towards a general theory of reduction. Part III: Cross-categorial reduction. Dialogue, 20(3), 496-529. https://doi.org/10.1017/S0012217300023593
Kemeny, J. G., y Oppenheim, P. (1956). On reduction. Philosophical Studies, 7(1-2), 6-19. https://doi.org/10.1007/BF02333288
Moulines, C. U. (1984). Ontological reduction in the natural sciences. En W. Balzer, D. A. Pearce y H. J. Schmidt (Eds.), Reduction in science: Structure, examples, philosophical problems (pp. 51-70). Reidel.
Moulines, C. U. (1985). Tipología axiomática de las teorías empíricas. Crítica: Revista Hispanoamericana de Filosofía, 17(51), 41-69. https://doi.org/10.22201/iifs.18704905e.1985.587
Nagel, E. (1935). The logic of reduction in the sciences. Erkenntnis, 5, 46-52. https://doi.org/10.1007/BF00172282
Nagel, E. (1949). The meaning of reduction in the natural sciences. En R. C. Stouffer (Ed.), Science and civilization (pp. 99-135). University of Wisconsin Press.
Nagel, E. (1961). The structure of science: Problems in the logic of explanation. Harcourt, Brace & World.
Nickles, T. (1973a). Heuristics and justification in scientific research: Comments on Shapere. En F. Suppe (Ed.), The structure of scientific theories (pp. 571-589). University of Illinois Press.
Nickles, T. (1973b). Two concepts of intertheoretic reduction. The Journal of Philosophy, 70(7), 181-201. https://doi.org/10.2307/2024906
O’Lery, M. M. (2018). Reducción y estructuralismo. Perspectivas, 3(2), 121-137. https://doi.org/10.20873/rpv3n2-42
O’Lery, M. M. (2023a). Ontological reduction: The reduction of classical collision mechanics to classical particle mechanics. En C. Abreu (Ed.), Philosophy of science in the 21st century: Contributions of metatheoretical structuralism (pp. 41-60). NEL; UFSC.
O’Lery, M. M. (2023b). Análisis de un caso de reducción homogénea. En Al-Chueyr Pereira Martins, L. M. Duque Martínez, L. Federico, G. Guerrero Pino y M. M. O’Lery (Eds.), Reflexiones filosóficas e históricas: ciencia, enseñanza y política científica (pp. 129-139). AFHIC; Universidad del Valle.
Palacios, P. (2024). Intertheory relations in physics. En E. N. Zalta y U. Nodelman (Eds.), The Stanford encyclopedia of philosophy. https://plato.stanford.edu/archives/spr2024/entries/physics-interrelate/
Schaffner, K. (1967). Approaches to reduction. Philosophy of Science, 34, 137-147. https://doi.org/10.1086/288137
Shapere, D. (1973). Scientific theories and their domains. En F. Suppe (Ed.), The structure of scientific theories (pp. 518-566). University of Illinois Press.

Downloads

Download data is not yet available.

Cited by