To give up copyright, the authors allow that, International Journal of Psychological Research, distribute the work more broadly, check for the reuse by others and take care of the necessary procedures for the registration and administration of copyright; at the same time, our editorial board represents the interests of the author and allows authors to re-use his work in various forms. In response to the above, authors transfer copyright to the journal, International Journal of Psychological Research. This transfer does not imply other rights which are not those of authorship (for example those that concern about patents). Likewise, preserves the authors rights to use the work integral or partially in lectures, books and courses, as well as make copies for educational purposes. Finally, the authors may use freely the tables and figures in its future work, wherever make explicit reference to the previous publication in International Journal of Psychological Research. The assignment of copyright includes both virtual rights and forms of the article to allow the editorial to disseminate the work in the manner which it deems appropriate.
The editorial board reserves the right of amendments deemed necessary in the application of the rules of publication.
Resumen
Las imágenes biestables tienen la posibilidad de ser interpretadas de dos maneras diferentes. Dadas sus características físicas, ellas admiten dos percepciones diferentes, asociadas a procesos moduladores de tipo top-down y bottom-up. A partir de una revisión narrativa exhaustiva tendiente a recabar los modelos teóricos y los fundamentos propios de la biestabilidad implicada en la observación de estas imágenes, el presente artículo teórico compila no sólo nociones que se entrecruzan en el entendimiento de este fenómeno, sino también las diversas clasificaciones y usos de este tipo de imágenes en la investigación psicológica, junto a una explicación detallada de diversos correlatos neurales implicados en la reversibilidad perceptual. Se concluye cuan extenso puede ser el uso de las imágenes biestables como recurso paradigmático, y que, por sus características, ellas tienen ricas posibilidades de ser utilizadas en tareas experimentales tendientes a desentrañar diversas inquietudes circunscritas esencialmente a procesos atencionales, sensoriales, perceptuales y de memoria.
Palabras clave:
Referencias
Baker, D. H., & Graf, E. W. (2010). Extrinsic factors in the perception of bistable motion stimuli. Vision Research, 50(13), 1257–1265. doi: https://doi.org/10.1016/j.visres.2010.04.016
Baker, D. H., Karapanagiotidis, T., Coggan, D. D., Wailes-Newson, K., & Smallwood, J. (2015). Brain networks underlying bistable perception. NeuroImage, 119, 229–234. doi: https://doi.org/10.1016/j.neuroimage.2015.06.053
Balcetis, E., & Dale, R. (2007). Conceptual set as a top—down constraint on visual object identification. Perception, 36(4), 581–595. doi: https://doi.org/10.1068/p5678
Barrera, M., & Calderón, L. (2013). Notes for supporting an epistemological neuropsychology: contributions from three perspectives. International Journal of Psychological Research, 6(2), 107–118.
Basar-Eroglu, C., Mathes, B., Khalaidovski, K., Brand, A., & Schmiedt-Fehr, C. (2016). Altered alpha brain oscillations during multistable perception in schizophrenia. International Journal of Psychophysiology,103, 118–128. doi: https://doi.org/10.1016/j.ijpsycho.2015.02.002
Bialystok, E., & Shapero, D. (2005). Ambiguous benefits: The effect of bilingualism on reversing ambiguous figures. Developmental Science, 8(6), 595–604. doi: https://doi.org/10.1111/j.1467-7687.2005.00451.x
Borisyuk, R., Chik, D., & Kazanovich, Y. (2009). Visual perception of ambiguous figures: synchronization based neural models. Biological Cybernetics, 100(6), 491–504. doi: 10.1007/s00422-009-0301-1
Borisyuk, R., & Hoppensteadt, F. (2004). A theory of epineuronal memory. Neural Networks, 17 (10), 1427–1436. doi: https://doi.org/10.1016/j.neunet.2004.07.006
Brascamp, J. W., Klink, P. C., & Levelt, W. J. M. (2015). The “laws” of binocular rivalry: 50 years of Levelt’s propositions. Vision Research, 109, 20–37. doi: https://doi.org/10.1016/j.visres.2015.02.019
Brouwer, G. J., & van Ee, R. (2006). Endogenous influences on perceptual bistability depend on exogenous stimulus characteristics. Vision Research, 46(20), 3393–3402. doi: https://doi.org/10.1016/j.visres.2006.03.016
Carroll, S. R., & Bressloff, P. C. (2014). Binocular rivalry waves in a directionally selective neural field model. Physica D: Nonlinear Phenomena, 285, 8–17. doi: https://doi.org/10.1016/j.physd.2014.07.002
Castelo-Branco, M., & Castelhano, J. (2015). Perceptual decision making. In A. W. Toga (Ed.), Brain Mapping (p. 401 - 408). Waltham: Academic Press. doi: https://doi.org/10.1016/B978-0-12-397025-1.00261-X
Chung-Fat-Yim, A., Sorge, G. B., & Bialystok, E. (2017). The relationship between bilingualism and selective attention in young adults: evidence from an ambiguous figures task. The Quarterly Journal of Experimental Psychology, 70(3), 366–372. doi: https://doi.org/10.1080/17470218.2016.1221435
Clément, G., & Demel, M. (2012). Perceptual reversal of bi-stable figures in microgravity and hypergravity during parabolic flight. Neuroscience Letters, 507 (2), 143–146. doi: https://doi.org/10.1016/j.neulet.2011.12.006
Clément, G., & Eckardt, J. (2005). Influence of the gravitational vertical on geometric visual illusions. Acta Astronautica, 56(9-12), 911–917. doi: https://doi.org/10.1016/j.actaastro.2005.01.017
Cumming, B. G., & Parker, A. J. (1997). Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 389(6648), 280. doi: 10.1038/38487
Denham, S., Bendixen, A., Mill, R., Tóth, D., Wennekers, T., Coath, M., … Winkler, I. (2012). Characterising switching behaviour in perceptual multi-stability. Journal of Neuroscience Methods, 210(1), 79 - 92. doi: https://doi.org/10.1016/j.jneumeth.2012.04.004
de Weert, C. M. M., Snoeren, P. R., & Koning, A. (2005). Interactions between binocular rivalry and Gestalt formation. Vision Research, 45(19), 2571–2579. doi: https://doi.org/10.1016/j.visres.2005.04.005
Fagard, J., Sacco, S., Yvenou, C., Domellöf, E., Kieffer, V., Tordjman, S., … Mamassian, P. (2008). The role of the corpus callosum in the perception of reversible figures in children. Vision Research, 48(23-24), 2451–2455. doi: https://doi.org/10.1016/j.visres.2008.08.007
Feist, M. I., & Gentner, D. (2007). Spatial language influences memory for spatial scenes. Memory & Cognition, 35(2), 283–296. doi: 10.3758/BF03193449
Fukuda, H., & Blake, R. (1992). Spatial interactions in binocular rivalry. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 362. doi: http://dx.doi.org/10.1037/0096-1523.18.2.362
Gale, A. G., & Findlay, J. M. (1983). Eye movement patterns in viewing ambiguous figures. Eye movements and psychological functions: International views, 145–168.
García-Pérez, M. A. (1989). Visual inhomogeneity and eye movements in multistable perception. Attention, Perception, & Psychophysics, 46(4), 397–400. doi: https://link.springer.com/content/pdf/10.3758/BF03204995.pdf
García-Pérez, M. A. (1992). The role of eye movements in perceptual processes. In E. Chekaluk & K. Llewellyn (Eds.), (Vol. 88, pp. 73–109). Amsterdam- London - New York - Tokyo: North-Holland: Elsevier. doi: https://doi.org/10.1016/S0166-4115(08)61743-4
Goolkasian, P., & Woodberry, C. (2010). Priming effects with ambiguous figures. Attention, Perception, & Psychophysics, 72(1), 168–178. doi: https://link.springer.com/article/10.3758/APP.72.1.168
Gori, S., Giora, E., & Pedersini, R. (2008). Perceptual multistability in figure-ground segregation using motion stimuli. Acta Psychologica, 129(3), 399–409. doi: https://doi.org/10.1016/j.actpsy.2008.09.004
Grossmann, J. K., & Dobbins, A. C. (2006). Competition in bistable vision is attribute-specific. Vision Research, 46(3), 285–292. doi: https://doi.org/10.1016/j.visres.2005.06.002
Hancock, S., & Andrews, T. J. (2007). The role of voluntary and involuntary attention in selecting perceptual dominance during binocular rivalry. Perception, 36(2), 288–298. doi: https://doi.org/10.1068/p5494
Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426. doi: 10.1037/0894-4105.12.3.426
Hsiao, J.-Y., Chen, Y.-C., Spence, C., & Yeh, S.-L. (2012). Assessing the effects of audiovisual semantic congruency on the perception of a bistable figure. Consciousness and Cognition, 21(2), 775–787. doi: https://doi.org/10.1016/j.concog.2012.02.001
Intaitė, M., Koivisto, M., & Castelo-Branco, M. (2014). Event-related potential responses to perceptual reversals are modulated by working memory load. Neuropsychologia, 56, 428–438. doi: https://doi.org/10.1016/j.neuropsychologia.2014.02.016
Intaitė, M., Koivisto, M., Rukšėnas, O., & Revonsuo, A. (2010). Reversal negativity and bistable stimuli: Attention, awareness, or something else? Brain and Cognition, 74(1), 24–34. doi: https://doi.org/10.1016/j.bandc.2010.06.002
Intaitė, M., Noreika, V., Šoliūnas, A., & Falter, C. M. (2013). Interaction of bottom-up and top-down processes in the perception of ambiguous figures. Vision Research, 89, 24–31. doi: https://doi.org/10.1016/j.visres.2013.06.011
Jackson, S., Cummins, F., & Brady, N. (2008). Rapid perceptual switching of a reversible biological figure. PloS one, 3(12), 1–15. doi: https://doi.org/10.1371/journal.pone.0003982
Kanai, R., Carmel, D., Bahrami, B., & Rees, G. (2011). Structural and functional fractionation of right superior parietal cortex in bistable perception. Current Biology, 21(3), R106–R107. doi: https://doi.org/10.1016/j.cub.2010.12.009
Kleinschmidt, A., Büchel, C., Zeki, S., & Frackowiak,R. S. J. (1998). Human brain activity during spontaneously reversing perception of ambiguous figures. Proceedings of the Royal Society of London B: Biological Sciences, 265(1413), 2427–2433. doi: 10.1098/rspb.1998.0594
Kogo, N., Hermans, L., Stuer, D., van Ee, R., & Wagemans, J. (2015). Temporal dynamics of different cases of bi-stable figure–ground perception. Vision Research, 106, 7–19. doi: https://doi.org/10.1016/j.visres.2014.10.029
Kornmeier, J., & Bach, M. (2005). The Necker cube—an ambiguous figure disambiguated in early visual processing. Vision Research, 45(8), 955–960. doi: https://doi.org/10.1016/j.visres.2004.10.006
Kornmeier, J., & Bach, M. (2006). Bistable perception—along the processing chain from ambiguous visual input to a stable percept. International Journal of Psychophysiology, 62(2), 345–349. doi: https://doi.org/10.1016/j.ijpsycho.2006.04.007
Kornmeier, J., Hein, C. M., & Bach, M. (2009). Multistable perception: when bottom-up and top-down coincide. Brain and Cognition, 69(1), 138–147. doi: https://doi.org/10.1016/j.bandc.2008.06.005
Krug, K., Brunskill, E., Scarna, A., Goodwin, G. M., & Parker, A. J. (2008). Perceptual switch rates with ambiguous structure-from-motion figures in bipolar disorder. Proceedings of the Royal Society of London B: Biological Sciences, 275(1645), 1839–1848. doi: 10.1098/rspb.2008.0043
Lalanne, C., & Lorenceau, J. (2004). Crossmodal integration for perception and action. Journal of Physiology-Paris, 98(1-3), 265–279. doi: https://doi.org/10.1016/j.jphysparis.2004.06.001
Laukkonen, R. E., & Tangen, J. M. (2017). Can observing a Necker cube make you more insightful? Consciousness and Cognition, 48, 198–211. doi: https://doi.org/10.1016/j.concog.2016.11.011
Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: changing views in perception. Trends in cognitive sciences, 3(7), 254–264. doi: https://doi.org/10.1016/S1364-6613(99)01332-7
Liu, C.-H., Tzeng, O. J. L., Hung, D. L., Tseng, P., & Juan, C.-H. (2012). Investigation of bistable perception with the “silhouette spinner”: Sit still, spin the dancer with your will. Vision Research,60, 34–39. doi: https://doi.org/10.1016/j.visres.2012.03.005
Long, G. M., & Batterman, J. M. (2012). Dissecting perceptual processes with a new tri-stable reversible figure. Perception, 41(10), 1163–1185. doi: https://doi.org/10.1068/p7313
Long, G. M., & Toppino, T. C. (1981). Multiple representations of the same reversible figure: Implications for cognitive decisional interpretations. Perception, 10(2), 231–234. doi: https://doi.org/10.1068/p100231
Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: alternating views of reversible figures. Psychological bulletin, 130(5), 748. doi: 10.1037/0033-2909.130.5.748
Matsumoto, Y., Takahashi, H., Murai, T., & Takahashi, H. (2015). Visual processing and social cognition in schizophrenia: relationships among eye movements, biological motion perception, and empathy. Neuroscience research, 90, 95–100. doi: https://doi.org/10.1016/j.neures.2014.10.011
McBain, R., Norton, D. J., Kim, J., & Chen, Y. (2011). Reduced cognitive control of a visually bistable image in schizophrenia. Journal of the International Neuropsychological Society, 17 (3), 551–556. doi: https://doi.org/10.1016/j.ijpsycho.2015.02.002
Meenan, J. P., & Miller, L. A. (1994). Perceptual flexibility after frontal or temporal lobectomy. Neuropsychologia, 32(9), 1145–1149. doi: https://doi.org/10.1016/0028-3932(94)90159-7
Megumi, F., Bahrami, B., Kanai, R., & Rees, G. (2015). Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception. NeuroImage, 107 , 190–197. doi: https://doi.org/10.1016/j.neuroimage.2014.12.018
Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4(7), 2–2. doi: 10.1167/4.7.2
Meso, A. I., & Masson, G. S. (2015). Dynamic resolution of ambiguity during tri-stable motion perception. Vision research, 107 , 113–123. doi: https://doi.org/10.1016/j.visres.2014.12.015
Mishra, J., & Hillyard, S. A. (2009). Endogenous attention selection during binocular rivalry at early stages of visual processing. Vision research, 49(10), 1073–1080. doi: https://doi.org/10.1016/j.visres.2008.02.018
Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noiseinduced alternations in an attractor network model of perceptual bistability. Journal of neurophysiology,98(3), 1125–1139. doi: https://doi.org/10.1152/jn.00116.2007
Mudrik, L., Deouell, L. Y., & Lamy, D. (2011). Scene congruency biases binocular rivalry. Consciousness and cognition, 20(3), 756–767. doi: https://doi.org/10.1016/j.concog.2011.01.001
Munar, E., Rosselló, J., Maiche, A., Travieso, D., & Nadal, M. (2008). Manual de neuropsicología. In V. Editores (Ed.), (pp. 59–96). Barcelona. doi: https://dialnet.unirioja.es/servlet/articulo?codigo=3423906
Munhall, K. G., Ten Hove, M. W., Brammer, M., & Paré, M. (2009). Audiovisual integration of speech in a bistable illusion. Current Biology, 19(9), 735–739. doi: 10.1016/j.cub.2009.03.019
Naber, M., Gruenhage, G., & Einhäuser, W. (2010). Tristable stimuli reveal interactions among subsequent percepts: Rivalry is biased by perceptual history. Vision Research, 50(8), 818–828. doi: https://doi.org/10.1016/j.visres.2010.02.004
Ngo, T. T., Liu, G. B., Tilley, A. J., Pettigrew, J. D., & Miller, S. M. (2008). The changing face of perceptual rivalry. Brain Research Bulletin, 75(5), 610–618. doi: https://doi.org/10.1016/j.brainresbull.2007.10.006
Okazaki, M., Kaneko, Y., Yumoto, M., & Arima, K. (2008). Perceptual change in response to a bistable picture increases neuromagnetic beta-band activities. Neuroscience Research, 61(3), 319–328. doi: 10.1016/j.neures.2008.03.010
Piantoni, G., Romeijn, N., Gomez-Herrero, G., Werf, Y. D., & Someren, E. J. W. (2017). Alpha power predicts persistence of bistable perception. Scientific Reports, 7 (1), 5208. doi: 10.1038/s41598-017-05610-8
Pressnitzer, D., & Hupé, J.-M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current biology, 16(13), 1351–1357. doi: https://doi.org/10.1016/j.cub.2006.05.054
Qiu, J., Wei, D., Li, H., Yu, C., Wang, T., & Zhang, Q. (2009). The vase–face illusion seen by the brain: An event-related brain potentials study. International Journal of Psychophysiology, 74(1), 69–73. doi: https://doi.org/10.1016/j.ijpsycho.2009.07.006
Ricci, C., & Blundo, C. (1990). Perception of ambiguous figures after focal brain lesions. Neuropsychologia, 28(11), 1163–1173. doi: https://doi.org/10.1016/0028-3932(90)90052-P
Rock, I., Hall, S., & Davis, J. (1994). Why do ambiguous figures reverse? Acta Psychologica, 87 (1), 33–59. doi: https://www.ncbi.nlm.nih.gov/pubmed/7985524
Sandberg, K., Barnes, G. R., Bahrami, B., Kanai, R., Overgaard, M., & Rees, G. (2014). Distinct MEG correlates of conscious experience, perceptual reversals and stabilization during binocular rivalry. Neuroimage, 100, 161–175. doi: https://doi.org/10.1016/j.neuroimage.2014.06.023
Sandberg, K., Blicher, J. U., Del Pin, S. H., Andersen, L. M., Rees, G., & Kanai, R. (2016). Improved estimates for the role of grey matter volume and GABA in bistable perception. Cortex, 83, 292–305. doi: https://doi.org/10.1016/j.cortex.2016.08.006
Schauer, G., Kanai, R., & Brascamp, J. W. (2016). Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks. Consciousness and cognition, 40, 105–115. doi: https://doi.org/10.1016/j.concog.2016.01.002
Smith, E. L., Grabowecky, M., & Suzuki, S. (2007). Auditory-visual crossmodal integration in perception of face gender. Current Biology, 17 (19), 1680–1685. doi: https://doi.org/10.1016/j.cub.2007.08.043
Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7), 310–318. doi: 10.1016/j.tics.2009.04.006
Sterzer, P., & Rees, G. (2009). Bistable perception and consciousness. Encyclopedia of Consciousness, 93–106. doi: https://doi.org/10.1016/B978-012373873-8.00011-6
Sterzer, P., Russ, M. O., Preibisch, C., & Kleinschmidt, A. (2002). Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage, 15(4), 908–916. doi: https://doi.org/10.1006/nimg.2001.1030
Takase, S., Yukumatsu, S., & Bingushi, K. (2013). Perceptual dominance during binocular rivalry is prolonged by a dynamic surround. Vision research, 92, 33–38. doi: https://doi.org/10.1016/j.visres.2013.09.002
Uhlhaas, P. J., & Silverstein, S. M. (2005). Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychological Bulletin, 131(4), 618. doi: 10.1037/0033-2909.131.4.618
van Dam, L. C. J., & van Ee, R. (2006). The role of saccades in exerting voluntary control in perceptual and binocular rivalry. Vision research, 46(6-7), 787–799. doi: https://doi.org/10.1016/j.visres.2005.10.011
van Loon, A. M., Knapen, T., Scholte, H. S., John-Saaltink, E. S., Donner, T. H., & Lamme, V. A. F. (2013). GABA shapes the dynamics of bistable perception. Current Biology, 23(9), 823–827. doi: https://doi.org/10.1016/j.cub.2013.03.067
Vatakis, A., & Spence, C. (2007). Crossmodal binding: Evaluating the “unity assumption” using audiovisual speech stimuli. Perception & Psychophysics, 69(5), 744–756. doi: https://doi.org/10.3758/BF03193776
Vernet, M., Brem, A.-K., Farzan, F., & Pascual-Leone, A. (2015). Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: a double-coil TMS–EEG study. Cortex, 64, 78–88. doi: https://doi.org/10.1016/j.cortex.2014.09.021
Weilnhammer, V., Ludwig, K., Hesselmann, G., & Sterzer, P. (2013). Frontoparietal cortex mediates perceptual transitions in bistable perception. Journal of Neuroscience, 33(40), 16009–16015. doi: https://doi.org/10.1523/JNEUROSCI.1418-13.2013
Weilnhammer, V., Ludwig, K., Sterzer, P., & Hesselmann, G. (2014). Revisiting the Lissajous figure as a tool to study bistable perception. Vision Research, 98, 107–112. doi: https://doi.org/10.1016/j.visres.2014.03.013
Weilnhammer, V., Stuke, H., Hesselmann, G., Sterzer, P., & Schmack, K. (2017). A predictive coding account of bistable perception-a model-based fMRI study. PLoS Computational Biology, 13(5), e1005536. doi: https://doi.org/10.1371/journal.pcbi.1005536
Xiaogang, W., Na, S., Lei, H., Yong, Z., Taiyong, B., & Jiang, Q. (2017). Category selectivity of human visual cortex in perception of rubin face–vase illusion. Frontiers in Psychology. doi: https://doi.org/10.3389/fpsyg.2017.01543
Yamamoto, S., & Yamamoto, M. (2006). Effects of the gravitational vertical on the visual perception of reversible figures. Neuroscience Research, 55(2), 218–221. doi: https://doi.org/10.1016/j.neures.2006.02.014
Yeh, S.-L., Hsiao, J.-Y., Chen, Y.-C., & Spence, C. (2011). Interplay of multisensory processing, attention, and consciousness as revealed by bistable figures. i-Perception, 2(8), 910–910. doi: https://doi.org/10.1068/ic910