Dimensions

PlumX

How to Cite
de Araújo Xavier, V., da Silva Melo, N., Ribeiro, S., & A P de Vasconcelos, N. (2024). Visual coding along multiple brain areas . International Journal of Psychological Research, 17(2), 54–75. https://doi.org/10.21500/20112084.7390
License terms
The work that is sent to this journal must be original, not published or sent to be published elsewhere; and if it is accepted for publication, authors will agree to transfer copyright to International Journal of Psychological Research. 

To give up copyright, the authors allow that, International Journal of Psychological Research, distribute the work more broadly, check for the reuse by others and take care of the necessary procedures for the registration and administration of copyright; at the same time, our editorial board represents the interests of the author and allows authors to re-use his work in various forms. In response to the above, authors transfer copyright to the journal, International Journal of Psychological Research. This transfer does not imply other rights which are not those of authorship (for example those that concern about patents). Likewise, preserves the authors rights to use the work integral or partially in lectures, books and courses, as well as make copies for educational purposes. Finally, the authors may use freely the tables and figures in its future work, wherever make explicit reference to the previous publication in International Journal of Psychological Research. The assignment of copyright includes both virtual rights and forms of the article to allow the editorial to disseminate the work in the manner which it deems appropriate. 

The editorial board reserves the right of amendments deemed necessary in the application of the rules of publication.

Abstract

This study focuses on understanding visual coding in multiple brain areas and its implications for neural processing in the visual system. It highlights the use of simultaneous recordings of large neuronal populations to investigate how visual information is encoded and processed in the brain. By studying the activity of multiple brain areas, the paper aims to uncover the mechanisms underlying brain-wide visual perception and provide insights into the neural basis of visual processing. The findings of this research contribute to the broader field of neuroscience and have implications for understanding visual disorders and developing therapeutic interventions

Keywords:

References

Adrian, E. (1929). "motor nerve fibers. part ii. the frequency of discharge in
reflex and voluntary contractions". J. Physiol., 67, 119–151.
Adrian, E. D., & Zotterman, Y. (1926, August). The impulses produced by sensory nerve endings: Part 3. impulses set up by touch and pressure. J. Physiol., 61(4), 465–483.
Allen, A. E., Procyk, C. A., Howarth, M., Walmsley, L., & Brown, T. M. (2016). Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order. The Journal of Physiology, 594(7), 1911–1929.
Amaral, D., Insausti, R., & Paxinos, G. (1990). The human nervous system.
San Diego: Academic, 711–755.
Andersen, P., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (2007). The hippocampal formation. Oxford University Press.
Arnts, H., Coolen, S. E., Fernandes, F. W., Schuurman, R., Krauss, J. K., Groe- newegen, H. J., & van den Munckhof, P. (2023, February). The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun, 5(3), fcad003.
Bourboulou, R., Marti, G., Michon, F.-X., El Feghaly, E., Nouguier, M., Robbe, D., Koenig, J., & Epsztein, J. (2019). Dynamic control of hippocampal spatial coding resolution by local visual cues. Elife, 8, e44487.
Cohen, M. R., & Kohn, A. (2011, June). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811–819.
Coolen, L. M., Veening, J. G., Wells, A. B., & Shipley, M. T. (2003). Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. Journal of Comparative Neurology, 463(2), 132–156.
Covington, B. P., & Al Khalili, Y. (2019). Neuroanatomy, nucleus lateral geniculate. StatPearls Publishing
Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Barthó, P., Wise, K. D., & Buzsáki, G. (2003, August). Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol., 90(2), 1314–1323. https://doi.org/10.1152/jn.00116.2003
Ding, S.-L. (2013). Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. Journal of Comparative Neurology, 521(18), 4145–4162.
Durand, S., Heller, G. R., Ramirez, T. K., Luviano, J. A., Williford, A., Sullivan, D. T., Cahoon, A. J., Farrell, C., Groblewski, P. A., Bennett, C., Siegle, J. H., & Olsen, S. R. (2023, February). Acute head-fixed recordings in awake mice with multiple neuropixels probes. Nature Protocols, 18(2), 424–457. https://doi.org/10.1038/s41596-022-00768-6
Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science, 327(5965), 584–587.
Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters, 27(8), 861–874.
Fontenele, A. J., de Vasconcelos, N. A. P., Feliciano, T., Aguiar, L. A. A., Soares- Cunha, C., Coimbra, B., Dalla Porta, L., Ribeiro, S., Rodrigues, A. J., Sousa, N., Carelli, P. V., & Copelli, M. (2019, May). Criticality between cortical states. Physcal. Review Letters, 122(20), 208101. https://doi.org/10.1103/PhysRevLett.122.208101
Gauriau, C., & Bernard, J.-F. (2004). Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. Journal of Neuroscience, 24(3), 752–761.
Hong, G., & Lieber, C. M. (2019). Novel electrode technologies for neural recordings. Nature Reviews Neuroscience, 20(6), 330–345.
Hubel, D. H. (1957, March). Tungsten microelectrode for recording from single units. Science, 125(3247), 549–550.
Hubel, D. H., & Wiesel, T. N. (1959, October). Receptive fields of single neurones in the cat’s striate cortex. J. Physiol., 148(3), 574–591.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 106.
Hubel, D. H., & Wiesel, T. N. (1968, March). Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 195(1), 215–243.
Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005, November). Fast readout of object identity from macaque inferior temporal cortex. Science, 310(5749), 863–866.
Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., B., Lee, A. K., Anastassiou, C. A., Andrei, A., Aydın, Ç., Barbic, M., Blanche, T. J., Bonin, V., Couto, J., Dutta, B., Gratiy, S. L., Gutnisky, D. A., Häusser, M., Karsh, B., Ledochowitsch, P., . . . Harris, T. D. (2017, November). Fully integrated silicon probes for high-density recording of neural activity. Nature, 551(7679), 232–236. https://doi.org/10.1038/nature24636
Kandel, E. R. (2013). Principles of neural science (5th ed.). McGraw- Hill.
Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217–230.
Lashley, K. S. (1930). Basic neural mechanisms in behavior. Psychological review, 37(1), 1.
LeDoux, J. E., Sakaguchi, A., & Reis, D. J. (1984). Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. Journal of Neuroscience, 4(3), 683–698.
Marshel, J. H., Garrett, M., Garrett, M. E., Nauhaus, I., & Callaway, E. M. (2011). Functional specialization of seven mouse visual cortical areas. Neuron, 72(6), 1040-1054. https://doi.org/10.1016/j.neuron.2011.12.004
Nicolelis, M. A., Ghazanfar, A. A., Faggin, B. M., Votaw, S., & Oliveira, L. M. (1997, April). Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron, 18(4), 529–537.
Nicolelis, M. A., & Lebedev, M. A. (2009). Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature reviews neuroscience, 10(7), 530–540.
Nicolelis, M. A. L., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G., Kralik, J. D., & Wise, S. P. (2003, September). Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. U. S. A., 100(19), 11041–11046.
Niell, C. M., & Stryker, M. P. (2008, July). Highly selective receptive fields in

mouse visual cortex. Journal of Neuroscience, 28(30), 7520–7536.
O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat.
Experimental neurology, 51(1), 78–109.
O’Mara, S. (2005). The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. Journal of anatomy, 207(3), 271–282.
Paxinos, G., & Franklin, K. (2001). The mouse brain in stereotaxic coordinates. Academic press.
Powell, T. P., & Mountcastle, V. B. (1959, September). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp., 105, 133–162.
Prusky, G., & Douglas, R. (2004). Characterization of mouse cortical spatial vision. Vision research, 44(28), 3411-3418. https://doi.org/10.1016/j.visres.2004.09.001
Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K. D. (2010, January). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.
Ringach, D. L. (2004). Mapping receptive fields in primary visual cortex. The Journal of Physiology, 558(3), 717–728.
Roth, M. M., Helmchen, F., & Kampa, B. M. (2012). Distinct functional properties of primary and posteromedial visual area of mouse neocortex. The Journal of Neuroscience, 32(28), 9716-9726. https://doi.org/10.1523/jneurosci.0110-12.2012
Smith, P. H., Manning, K. A., & Uhlrich, D. J. (2010). Evaluation of inputs to rat primary auditory cortex from the suprageniculate nucleus and extrastriate visual cortex. Journal of Comparative Neurology, 518(18), 3679–3700.
Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., . . . Harris, T. D. (2021, April). Neuropixels 2.0: A miniaturized high- density probe for stable, long-term brain recordings. Science, 372(6539).
Steinmetz, N. A., Koch, C., Harris, K. D., & Carandini, M. (2018). Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Current opinion in neurobiology, 50, 92–100.
Stevenson, I. H., & Kording, K. P. (2011, February). How advances in neural recording affect data analysis. Nat. Neurosci., 14(2), 139–142.
Trautmann, E. M., Hesse, J. K., Stine, G. M., Xia, R., Zhu, S., O’Shea, D. J., Karsh, B., Colonell, J., Lanfranchi, F. F., Vyas, S., Zimnik, A., Steinmann, N. A., Wagenaar, D. A., Andrei, A., Lopez, C. M., O'Callaghan, J., Putzeys, J., Raducanu, B. C., Welkenhuysen, M., Churchland, M., . . . Harris, T. (2023, May). Large-scale high-density brain-wide neural recording in nonhuman primates. bioRxiv. https://doi.org/10.1101/2023.02.01.526664
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). MIT Press.
Wang, Q., & Burkhalter, A. (2007). Area map of mouse visual cortex. The Journal of Comparative Neurology, 502(3), 339-357. https://doi.org/10.1002/cne.21286
Watson, C., Paxinos, G., & Puelles, L. (2011). The mouse nervous system.
Academic Press.
Whitlock, J. R., Sutherland, R. J., Witter, M. P., Moser, M.-B., & Moser, E. I. (2008). Navigating from hippocampus to parietal cortex. Proceedings of the National Academy of Sciences, 105(39), 14755–14762.
Zrinzo, L., Zrinzo, L. V., & Hariz, M. (2007). The peripeduncular nucleus: a novel target for deep brain stimulation? Neuroreport, 18(15), 1631–1632.

Downloads

Download data is not yet available.

Cited by