Dimensions

PlumX

Cómo citar
Becerra, D., Calixto, A., & Orio, P. (2023). El nemátodo consciente: Explorando marcadores de consciencia fenoménica mínima en Caenorhabditis elegans. International Journal of Psychological Research, 16(2), 87–104. https://doi.org/10.21500/20112084.6487
Términos de licencia
The work that is sent to this journal must be original, not published or sent to be published elsewhere; and if it is accepted for publication, authors will agree to transfer copyright to International Journal of Psychological Research. 

To give up copyright, the authors allow that, International Journal of Psychological Research, distribute the work more broadly, check for the reuse by others and take care of the necessary procedures for the registration and administration of copyright; at the same time, our editorial board represents the interests of the author and allows authors to re-use his work in various forms. In response to the above, authors transfer copyright to the journal, International Journal of Psychological Research. This transfer does not imply other rights which are not those of authorship (for example those that concern about patents). Likewise, preserves the authors rights to use the work integral or partially in lectures, books and courses, as well as make copies for educational purposes. Finally, the authors may use freely the tables and figures in its future work, wherever make explicit reference to the previous publication in International Journal of Psychological Research. The assignment of copyright includes both virtual rights and forms of the article to allow the editorial to disseminate the work in the manner which it deems appropriate. 

The editorial board reserves the right of amendments deemed necessary in the application of the rules of publication.

Resumen

While subcellular components of cognition and affectivity that involve the interaction between experience, environment, and physiology —such as learning, trauma, or emotion— are being identified, the physical mechanisms of phenomenal consciousness remain more elusive. We are interested in exploring whether ancient, simpler organisms such as nematodes have minimal consciousness. Is there something that feels like to be a worm? Or are worms blind machines? ‘Simpler’ models allow us to simultaneously
extract data from multiple levels such as slow and fast neural dynamics, structural connectivity, molecular dynamics, behavior, decision making, etc.,
and thus, to test predictions of the current frameworks in dispute. In the present critical review, we summarize the current models of consciousness
in order to reassess in light of the new evidence whether Caenorhabditis elegans, a nematode with a nervous system composed of 302 neurons, has minimal consciousness. We also suggest empirical paths to further advance consciousness research using C. elegans.

Palabras clave:

Referencias

Albeg, A., Smith, C. J., Chatzigeorgiou, M., Feitelson, D. G., Hall, D. H., Schafer, W. R., Miller, D. M., & Treinin, M. (2011). C. elegans multi-dendritic sensory neurons: Morphology and function. Molecular and Cellular Neuroscience, 46(1), 308–317. https://doi.org/10.1016/j.mcn.2010.10.001

Alkire, M., Hudetz, A., & Tononi, G. (2008). Consciousness and Anesthesia. Science, 322(5903), 876–880. https://doi.org/10.1126/science.1149213

Amano, H., & Maruyama, I. N. (2011). Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans. Learning & Memory (Cold Spring Harbor, N.Y.), 18(10), 654–665. https://doi.org/10.1101/lm.2224411

Antonopoulos, C. G., Fokas, A. S., & Bountis, T. C. (2016). Dynamical complexity in the C.elegans neural network. European Physical Journal: Special Topics, 225(6–7), 1255–1269. https://doi.org/10.1140/epjst/e2016-02670-3

Ardiel, E. L., & Rankin, C. H. (2010). An elegant mind: Learning and memory in Caenorhabditis elegans. Learning & Memory, 17(4), 191–201. https://doi.org/10.1101/lm.960510

Arendt, D., Tosches, M. A., & Marlow, H. (2016). From nerve net to nerve ring, nerve cord and brain-evolution of the nervous system. Nature Reviews Neuroscience, 17(1), 61–72. https://doi.org/10.1038/nrn.2015.15

Arthuis, M., Valton, L., Rgis, J., Chauvel, P., Wendling, F., Naccache, L., Bernard, C., & Bartolomei, F. (2009). Impaired consciousness during temporal lobe seizures is related to increased long-distance corticalsubcortical synchronization. Brain, 132(8), 2091–2101. https://doi.org/10.1093/brain/awp086

Bargmann, C. (2006). Chemosensation in C. elegans. WormBook. https://doi.org/10.1895/wormbook.1.123.1
Barrett, A. B., & Seth, A. K. (2011). Practical measures of integrated information for time- series data. PLoS Computational Biology, 7(1). https://doi.org/10.1371/journal.pcbi.1001052

Barron, A. B., & Klein, C. (2016). What insects can tell us about the origins of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 4900–4908. https://doi.org/10.1073/pnas.1520084113

Bayne, T., & Carter, O. (2018). Dimensions of consciousness and the psychedelic state. Neuroscience of Consciousness, 2018(1), 1–8. https://doi.org/10.1093/nc/niy008

Bechtel, W. (1995). Consciousness : Perspectives From Symbolic Ai. Neuropsycologia, 33(9), 1075–1086.

Bechtel, W. (2008). Mental Mechanisms. Philosophical Perspectives on Cognitive Neuroscience. Routledge.

Bechtel, W., & Abrahamsen, A. A. (2013). Thinking Dynamically About Biological Mechanisms: Networks of Coupled Oscillators. Foundations of Science, 18(4), 707–723. https://doi.org/10.1007/s10699-012-9301-z

Bellesi, M., de Vivo, L., Tononi, G., & Cirelli, C. (2015). Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1–eGFP-L10a mice. Genomics Data, 6, 114–117. https://doi.org/10.1016/j.gdata.2015.08.031

Bentley, B., Branicky, R., Barnes, C. L., Chew, Y. L., Yemini, E., Bullmore, E. T., Vértes, P. E., & Schafer, W. R. (2016). The Multilayer Connectome of Caenorhabditis elegans. In PLoS Computational Biology (Vol. 12, Issue 12). https://doi.org/10.1371/journal.pcbi.1005283

Beverly, M., Anbil, S., & Sengupta, P. (2011). Degeneracy and Neuromodulation among Thermosensory Neurons Contribute to Robust Thermosensory Behaviors in Caenorhabditis elegans. Journal of Neuroscience, 31(32), 11718–11727. https://doi.org/10.1523/JNEUROSCI.1098-11.2011

Bhatla, N. (2014). Tasting Light Through Hydrogen Peroxide: Molecular Mechanisms and Neural Circuits. Massachusetts Institute of Technology.

Bickle, J. (2007). Who Says You Can’t Do a Molecular Biology of Consciousness? In M. Schouten & H. Looren de Jong (Eds.), The Matter of the Mind (pp. 275–297). Blackwell.

Birch, J., Ginsburg, S., & Jablonka, E. (2020). Unlimited Associative Learning and the origins of consciousness: a primer and some predictions. Biology and Philosophy, 35(6), 1–23. https://doi.org/10.1007/s10539-020-09772-0

Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 20(1), 144–166.

Bola, M., Barrett, A. B., Pigorini, A., Nobili, L., Seth, A. K., & Marchewka, A. (2018). Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans. NeuroImage, 167, 130–142. https://doi.org/10.1016/j.neuroimage.2017.11.030

Bonhomme, V., Staquet, C., Montupil, J., Defresne, A., Kirsch, M., Martial, C., Vanhaudenhuyse, A., Chatelle, C., Larroque, S. K., Raimondo, F., Demertzi, A., Bodart, O., Laureys, S., & Gosseries, O. (2019). General Anesthesia: A Probe to Explore Consciousness. Frontiers in Systems Neuroscience, 13(August). https://doi.org/10.3389/fnsys.2019.00036

Bouarab, C., Roullot-Lacarrière, V., Vallée, M., Le Roux, A., Guette, C., Mennesson, M., Marighetto, A., Desmedt, A., Piazza, P. V., & Revest, J. M. (2021). PAI-1 protein is a key molecular effector in the transition from normal to PTSD-like fear memory. Molecular Psychiatry, 26(9), 4968–4981. https://doi.org/10.1038/s41380-021-01024-1

Bowers, M. E., & Yehuda, R. (2016). Intergenerational Transmission of Stress in Humans. Neuropsychopharmacology, 41(1), 232–244. https://doi.org/10.1038/npp.2015.247

Brandom, R. (1994). Making It Explicit. Reasoning, Representing, and Discursive Commitment. In International Studies in Philosophy (Vol. 31, Issue 2). Harvard University Press.

Bronfman, Z. Z., Ginsburg, S., & Jablonka, E. (2016). The transition to minimal consciousness through the evolution of associative learning. Frontiers in Psychology, 7(DEC), 1–16. https://doi.org/10.3389/fpsyg.2016.01954

Cabanac, M., Cabanac, A. J., & Parent, A. (2009). The emergence of consciousness in phylogeny. Behavioural Brain Research, 198(2), 267–272. https://doi.org/10.1016/j.bbr.2008.11.028

Carruthers, P. (2018). Comparative psychology without consciousness. Consciousness and Cognition, 63(May), 47–60. https://doi.org/10.1016/j.concog.2018.06.012

Cea, I. (2021). Integrated information theory of consciousness is a functionalist emergentism. Synthese, 199(1–2), 2199–2224. https://doi.org/10.1007/s11229-020-02878-8

Chalfie, M., & Sulston, J. (1981). Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Developmental Biology, 82(2), 358–370. https://doi.org/10.1016/0012-1606(81)90459-0

Chalmers, D. J. (1996). The conscious mind: In Search of a Fundamental Theory. Oxford University Press.
Cheong, M. C., Artyukhin, A. B., You, Y. J., & Avery, L. (2015). An opioid-like system regulating feeding behavior in C. elegans. ELife, 4, 1–19. https://doi.org/10.7554/eLife.06683

Cisek, P. (2019). Resynthesizing behavior through phylogenetic refinement. Attention, Perception, and Psychophysics, 81(7), 2265–2287. https://doi.org/10.3758/s13414-019-01760-1

Cloninger, C. R., Cloninger, K. M., Zwir, I., & Keltikangas-Järvinen, L. (2019). The complex genetics and biology of human temperament: a review of traditional concepts in relation to new molecular findings. Translational Psychiatry, 9(1). https://doi.org/10.1038/s41398-019-0621-4

Cohen, D., Teichman, G., Volovich, M., Zeevi, Y., Elbaum, L., Madar, A., Louie, K., Levy, D. J., & Rechavi, O. (2019). Bounded rationality in C. elegans is explained by circuit-specific normalization in chemosensory pathways. Nature Communications, 10(1), 1–12. https://doi.org/10.1038/s41467-019-11715-7

Cook, N. D. (2008). The neuron-level phenomena underlying cognition and consciousness: Synaptic activity and the action potential. Neuroscience, 153(3), 556–570. https://doi.org/10.1016/j.neuroscience.2008.02.042

Cook, N. D., Carvalho, G. B., & Damasio, A. (2014). From membrane excitability to metazoan psychology. Trends in Neurosciences, 37(12), 698–705. https://doi.org/10.1016/j.tins.2014.07.011

Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen, K. C. Q., Tang, L. T. H., Bayer, E. A., Duerr, J. S., Bülow, H. E., Hobert, O., Hall, D. H., & Emmons, S. W. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 571(7763), 63–71. https://doi.org/10.1038/s41586-019-1352-7

Darracq, M., Funk, C. M., Polyakov, D., Riedner, B., Gosseries, O., Nieminen, J. O., Bonhomme, V., Brichant, J. F., Boly, M., Laureys, S., Tononi, G., & Sanders, R. D. (2018). Evoked Alpha Power is Reduced in Disconnected Consciousness During Sleep and Anesthesia. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-34957-9

Davis, K., Cheong, M. C., Park, J. S., & You, Y. J. (2017). Appetite control in C. elegans. In Appetite and Food Intake: Central Control (Second, pp. 1–16). CRC Press.

Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211. https://doi.org/10.1016/j.tics.2006.03.007

Dehaene, S., Changeux, J. P., & Naccache, L. (2011). The global neuronal workspace model of conscious access: From neuronal architectures to clinical applications. In Characterizing Consciousness: From Cognition to the Clinic? (Vol. 18, pp. 55–84). Springer-Verlag. https://doi.org/10.1007/978-3-642-18015-6_4

Dekkers, M. P. J., Salfelder, F., Sanders, T., Umuerri, O., Cohen, N., & Jansen, G. (2021). Plasticity in gustatory and nociceptive neurons controls decision making in C. elegans salt navigation. Communications Biology, 4(1). https://doi.org/10.1038/s42003-021-02561-9

Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain Dynamics Underlying the Nonlinear Threshold for Access to Consciousness. PLoS Biology, 5(10), e260. https://doi.org/10.1371/journal.pbio.0050260

Edelman, S. (2008). Computing the mind. Oxford University Press.

Eisemann, C. H., Jorgensen, W. K., Merritt, D. J., Rice, M. J., Cribb, B. W., Webb, P. D., & Zalucki, M. P. (1984). Do insects feel pain? — A biological view. Experientia, 40(2), 164–167. https://doi.org/10.1007/BF01963580

Elwood, R. W. (2019). Discrimination between nociceptive reflexes and more complex responses consistent with pain in crustaceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1785). https://doi.org/10.1098/rstb.2019.0368

Emmeche, C., Køppe, S., & Stjernfelt, F. (2000). Levels , Emergence , and Three Versions of Downward Causation. In Downward Causation. Minds, Bodies and Matter (pp. 13–34). Aarhus University Press.

Ewald, C. Y., Castillo-Quan, J. I., & Blackwell, T. K. (2017). Untangling Longevity, Dauer, and Healthspan in Caenorhabditis elegans Insulin/IGF-1-Signalling. Gerontology, 64(1), 96–104. https://doi.org/10.1159/000480504

Feinberg, T. E. (2012). Neuroontology, neurobiological naturalism, and consciousness: A challenge to scientific reduction and a solution. Physics of Life Reviews, 9(1), 13–34. https://doi.org/10.1016/j.plrev.2011.10.019

Feinberg, T. E., & Mallatt, J. (2016). The ancient origins of consciousness. How the brain created experience (Issue July). MIT Press.
Feinberg, T. E., & Mallatt, J. (2018). Consciousness Demystified. MIT Press.

Feinberg, T. E., & Mallatt, J. (2020). Phenomenal Consciousness and Emergence: Eliminating the Explanatory Gap. Frontiers in Psychology, 11(June), 1–15. https://doi.org/10.3389/fpsyg.2020.01041

Ferrarelli, F., Massimini, M., Sarasso, S., Casali, A., Riedner, B. A., Angelini, G., Tononi, G., & Pearce, R. A. (2010). Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proceedings of the National Academy of Sciences, 107(6), 2681–2686. https://doi.org/10.1073/pnas.0913008107

Forman, S. A. (2006). Of Mice and Nematodes. Anesthesiology, 105(3), 442–444. https://doi.org/10.1097/00000542-200609000-00003
Frézal, L., & Félix, M. A. (2015). C. elegans outside the Petri dish. ELife, 4, 1–14. https://doi.org/10.7554/eLife.05849

Gabaldon, C., & Calixto, A. (2019). Worm corpses affect quantification of dauer recovery. MicroPublication Biology. https://doi.org/https://doi.org/10.17912/micropub.biology.000121

Gabaldón, C., Legüe, M., Palominos, M. F., Verdugo, L., Gutzwiller, F., & Calixto, A. (2020). Intergenerational Pathogen-Induced Diapause in Caenorhabditis elegans Is Modulated by mir-243. MBio, 11(5). https://doi.org/10.1128/mBio.01950-20

Ghosh, D. D., Nitabach, M. N., Zhang, Y., & Harris, G. (2017). Multisensory integration in C. elegans. Current Opinion in Neurobiology, 43, 110–118. https://doi.org/10.1016/j.conb.2017.01.005

Ghosh, D. D., Sanders, T., Hong, S., McCurdy, L. Y., Chase, D. L., Cohen, N., Koelle, M. R., & Nitabach, M. N. (2016). Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans. Neuron, 92(5), 1049–1062. https://doi.org/10.1016/j.neuron.2016.10.030

Gibbons, M., Versace, E., Crump, A., Baran, B., & Chittka, L. (2022). Motivational trade-offs and modulation of nociception in bumblebees. Proceedings of the National Academy of Sciences of the United States of America, 119(31), 3–5. https://doi.org/10.1073/pnas.2205821119

Ginsburg, S., & Jablonka, E. (2007). The Transition to Experiencing: II. The Evolution of Associative Learning Based on Feelings. Biological Theory, 2(3), 231–243. https://doi.org/10.1162/biot.2007.2.3.231

Ginsburg, S., & Jablonka, E. (2019). The evolution of the sensitive soul: Learning and the origins of consciousness. In The evolution of the sensitive soul: Learning and the origins of consciousness.

Ginsburg, S., & Jablonka, E. (2021). Evolutionary transitions in learning and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1821). https://doi.org/10.1098/rstb.2019.0766

Gleeson, P., Lung, D., Grosu, R., Hasani, R., & Larson, S. D. (2018). C302: A multiscale framework for modelling the nervous system of Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1758). https://doi.org/10.1098/rstb.2017.0379

Godfrey-Smith, P. (2016). Animal Evolution and the Origins of Experience. In D. L. Smith (Ed.), How Biology Shapes Philosophy: New Foundations for Naturalism (pp. 51–71). Cambridge University Press.

Golden, J. W., & Riddle, D. L. (1984). A Caenorhabditis elegans dauer-inducing pheromone and an antagonistic component of the food supply. Journal of Chemical Ecology, 10(8), 1265–1280. https://doi.org/10.1007/BF00988553

Goodman, M. B., & Sengupta, P. (2019). How caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics, 212(1), 25–51. https://doi.org/10.1534/genetics.118.300241

Groening, J., Venini, D., & Srinivasan, M. V. (2017). In search of evidence for the experience of pain in honeybees: A self-Administration study. Scientific Reports, 7(October 2016), 1–8. https://doi.org/10.1038/srep45825

Guillermin, M. L., Carrillo, M. A., & Hallem, E. A. (2017). A Single Set of Interneurons Drives Opposite Behaviors in C. elegans. Current Biology, 27(17), 2630-2639.e6. https://doi.org/10.1016/j.cub.2017.07.023

Han, B., Dong, Y., Zhang, L., Liu, Y., Rabinowitch, I., & Bai, J. (2017). Dopamine signaling tunes spatial pattern selectivity in C. elegans. ELife, 6, 1–14. https://doi.org/10.7554/eLife.22896

Harris, G., Wu, T., Linfield, G., Choi, M. K., Liu, H., & Zhang, Y. (2019). Molecular and cellular modulators for multisensory integration in C. Elegans. PLoS Genetics, 15(3), 1–28. https://doi.org/10.1371/journal.pgen.1007706

Hime, G. R., Stonehouse, S. LA, & Pang, T. Y. (2021). Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World Journal of Psychiatry, 11(10), 711–735. https://doi.org/10.5498/wjp.v11.i10.711

Hobert, O., Glenwinkel, L., & White, J. (2016). Revisiting Neuronal Cell Type Classification in Caenorhabditis elegans. Current Biology, 26(22), R1197–R1203. https://doi.org/10.1016/j.cub.2016.10.027

Hobson, J. A., & Friston, K. J. (2016). A response to our theatre critics. Journal of Consciousness Studies, 3/4, 245–254.
Holló, G., & Novák, M. (2012). The manoeuvrability hypothesis to explain the maintenance of bilateral symmetry in animal evolution. Biology Direct, 7(1), 22. https://doi.org/10.1186/1745-6150-7-22

Hudetz, A. G., & Mashour, G. A. (2016). Disconnecting Consciousness: Is There a Common Anesthetic End Point? Anesthesia & Analgesia, 123(5), 1228–1240. https://doi.org/10.1213/ANE.0000000000001353

Hukema, R. K., Rademakers, S., & Jansen, G. (2008). Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. Learning and Memory, 15(11), 829–836. https://doi.org/10.1101/lm.994408

Hutto, D. D., & Myin, E. (2013). Radicalizing Enactivism. The MIT Press. https://doi.org/10.7551/mitpress/9780262018548.001.0001
Ishihara, T., Iino, Y., Mohri, A., Mori, I., Gengyo-Ando, K., Mitani, S., & Katsura, I. (2002). HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell, 109(5), 639–649. https://doi.org/10.1016/S0092-8674(02)00748-1

Iwasaki, M., & Paszkowski, J. (2014). Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proceedings of the National Academy of Sciences, 111(23), 8547–8552. https://doi.org/10.1073/pnas.1402275111

Izquierdo, E. J. (2019). Role of simulation models in understanding the generation of behavior in C. elegans. In Current Opinion in Systems Biology (Vol. 13, Issue November, pp. 93–101). Elsevier Ltd. https://doi.org/10.1016/j.coisb.2018.11.003

Jeziorski, J., Brandt, R., Evans, J. H., Campana, W., Kalichman, M., Thompson, E., Goldstein, L., Koch, C., & Muotri, A. R. (2022). Brain organoids, consciousness, ethics and moral status. Seminars in Cell and Developmental Biology, January. https://doi.org/10.1016/j.semcdb.2022.03.020

Ji, N., Venkatachalam, V., Rodgers, H., Hung, W., Kawano, T., Clark, C. M., Lim, M., Alkema, M. J., Zhen, M., & Samuel, A. D. T. (2021). Corollary discharge promotes a sustained motor state in a neural circuit for navigation. ELife, 10(Cd), 1–28. https://doi.org/10.7554/ELIFE.68848

Jiang, L., Wang, M., Lin, S., Jian, R., Li, X., Chan, J., Dong, G., Fang, H., Robinson, A. E., Aguet, F., Anand, S., Ardlie, K. G., Gabriel, S., Getz, G., Graubert, A., Hadley, K., Handsaker, R. E., Huang, K. H., Kashin, S., … Snyder, M. P. (2020). A Quantitative Proteome Map of the Human Body. Cell, 183(1), 269-283.e19. https://doi.org/10.1016/j.cell.2020.08.036

Josselyn, S. A., & Tonegawa, S. (2020). Memory engrams: Recalling the past and imagining the future. Science, 367(6473). https://doi.org/10.1126/science.aaw4325

Kandel, E. R. (2001). The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science, 294(5544), 1030–1038. https://doi.org/10.1126/science.1067020

Kaplan, H. S., Nichols, A. L. A., & Zimmer, M. (2018). Sensorimotor integration in Caenorhabditis elegans : a reappraisal towards dynamic and distributed computations. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1758), 20170371. https://doi.org/10.1098/rstb.2017.0371

Kaplan, H. S., Salazar Thula, O., Khoss, N., & Zimmer, M. (2020). Nested Neuronal Dynamics Orchestrate a Behavioral Hierarchy across Timescales. Neuron, 105(3), 562-576.e9. https://doi.org/10.1016/j.neuron.2019.10.037

Kato, S., Kaplan, H. S., Schrödel, T., Skora, S., Lindsay, T. H., Yemini, E., Lockery, S., & Zimmer, M. (2015). Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell, 163(3), 656–669. https://doi.org/10.1016/j.cell.2015.09.034

Kim, H., Hudetz, A. G., Lee, J., Mashour, G. A., & Lee, U. (2018). Estimating the Integrated Information Measure Phi from High-Density Electroencephalography during States of Consciousness in Humans. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00042

Kim, J. (1993). Supervenience and Mind: Selected Philosophical Essays. Cambridge University Press.
Kim, J. (2010). Essays in the Metaphysics of Mind. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199585878.001.0001
Kitadai, N., & Maruyama, S. (2018). Origins of building blocks of life: A review. Geoscience Frontiers, 9(4), 1117–1153. https://doi.org/10.1016/j.gsf.2017.07.007

Klein, M., Krivov, S. V., Ferrer, A. J., Luo, L., Samuel, A. D. T., & Karplus, M. (2017). Exploratory search during directed navigation in C. Elegans and drosophila larva. ELife, 6, 1–14. https://doi.org/10.7554/eLife.30503

Kolodny, O., Moyal, R., & Edelman, S. (2021). A possible evolutionary function of phenomenal conscious experience of pain. Neuroscience of Consciousness, 2021(2), 1–10. https://doi.org/10.1093/nc/niab012

Kuntz, S., Poeck, B., & Strauss, R. (2017). Visual Working Memory Requires Permissive and Instructive NO/cGMP Signaling at Presynapses in the Drosophila Central Brain. Current Biology, 27(5), 613–623. https://doi.org/10.1016/j.cub.2016.12.056

Kupfermann, I., & Kandel, E. R. (1969). Neuronal Controls of a Behavioral Response Mediated by the Abdominal Ganglion of Aplysia. Science, 164(3881), 847–850. https://doi.org/10.1126/science.164.3881.847

Lacalli, T. (2020). Evolving Consciousness: Insights From Turing, and the Shaping of Experience. Frontiers in Behavioral Neuroscience, 14(November), 1–9. https://doi.org/10.3389/fnbeh.2020.598561

Lagercrantz, H. (2014). The emergence of consciousness: Science and ethics. Seminars in Fetal and Neonatal Medicine, 19(5), 300–305. https://doi.org/10.1016/j.siny.2014.08.003

Lagercrantz, H., & Changeux, J. P. (2009). The emergence of human consciousness: From fetal to neonatal life. Pediatric Research, 65(3), 255–260. https://doi.org/10.1203/PDR.0b013e3181973b0d

Lakhina, V., Arey, R. N., Kaletsky, R., Kauffman, A., Stein, G., Keyes, W., Xu, D., & Murphy, C. T. (2015). Genome-wide functional analysis of CREB/Long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron, 85(2), 330–345. https://doi.org/10.1016/j.neuron.2014.12.029

Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, and related disorders. The Lancet Neurology, 3(9), 537–546. https://doi.org/10.1016/S1474-4422(04)00852-X

Lawler, D. E., Chew, Y. L., Hawk, J. D., Aljobeh, A., Schafer, W. R., & Albrecht, D. R. (2021). Sleep Analysis in Adult C. elegans Reveals State-Dependent Alteration of Neural and Behavioral Responses. The Journal of Neuroscience, 41(9), 1892–1907. https://doi.org/10.1523/JNEUROSCI.1701-20.2020

Leung, A., Cohen, D., Van Swinderen, B., & Tsuchiya, N. (2021). Integrated information structure collapses with anesthetic loss of conscious arousal in Drosophila melanogaster. PLoS Computational Biology, 17(2), 1–27. https://doi.org/10.1371/JOURNAL.PCBI.1008722

Liu, Q., Kidd, P. B., Dobosiewicz, M., & Bargmann, C. I. (2018). C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials. Cell, 175(1), 57-70.e17. https://doi.org/10.1016/j.cell.2018.08.018

Luppi, A. I., Mediano, P. A. M., Rosas, F. E., Harrison, D. J., Carhart-Harris, R. L., Bor, D., & Stamatakis, E. A. (2021). What it is like to be a bit: an integrated information decomposition account of emergent mental phenomena. Neuroscience of Consciousness, 2021(2). https://doi.org/10.1093/nc/niab027

Maier, A., & Tsuchiya, N. (2021). Growing evidence for separate neural mechanisms for attention and consciousness. Attention, Perception, & Psychophysics, 83(2), 558–576. https://doi.org/10.3758/s13414-020-02146-4

Maley, C. J., & Piccinini, G. (2018). The biological evolution of consciousness. In R. J. Gennaro (Ed.), The Routledge Handbook of Consciousness (pp. 379–387). Routledge. https://doi.org/10.4324/9781315676982

Mallatt, J. (2021). A traditional scientific perspective on the integrated information theory of consciousness. Entropy, 23(6). https://doi.org/10.3390/e23060650

Marth, J. D. (2008). A unified vision of the building blocks of life. Nature Cell Biology, 10(9), 1015. https://doi.org/10.1038/ncb0908-1015
Mashour, G. A., & Alkire, M. (2013). Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia.

Proceedings of the National Academy of Sciences of the United States of America, 110(SUPPL2), 10357–10364. https://doi.org/10.1073/pnas.1301188110

Mashour, G. A., Roelfsema, P., Changeux, J. P., & Dehaene, S. (2020). Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron, 105(5), 776–798. https://doi.org/10.1016/j.neuron.2020.01.026

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., & Tononi, G. (2005). Breakdown of Cortical Effective Connectivity During Sleep. Science, 309(5744), 2228–2232. https://doi.org/10.1126/science.1117256

McGrath, P. T., & Ruvinsky, I. (2019). A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. Current Opinion in Systems Biology, 13, 23–30. https://doi.org/10.1016/j.coisb.2018.08.012

Merritt, D. M., Melkis, J. G., Kwok, B., Tran, C., & van der Kooy, D. (2019). Analysis of Mutants Suggests Kamin Blocking in C. elegans is Due to Interference with Memory Recall Rather than Storage. Scientific Reports, 9(1), 2371. https://doi.org/10.1038/s41598-019-38939-3
Metaxakis, A., Petratou, D., & Tavernarakis, N. (2018). Multimodal sensory processing in Caenorhabditis elegans. Open Biology, 8(6). https://doi.org/10.1098/rsob.180049

Metzinger, T. (2020). Minimal phenomenal experience Meditation, tonic alertness, and the phenomenology of “pure” consciousness. Philosophy and the Mind Sciences, 1(2020), 1–44.

Miller, S. M. (2014). Closing in on the constitution of consciousness. Frontiers in Psychology, 5(NOV), 1–18. https://doi.org/10.3389/fpsyg.2014.01293

Moore, R. S., Kaletsky, R., & Murphy, C. T. (2019). Piwi/PRG-1 Argonaute and TGF-β Mediate Transgenerational Learned Pathogenic Avoidance. Cell, 177(7), 1827-1841.e12. https://doi.org/10.1016/j.cell.2019.05.024

Nagel, T. (1974). What Is It Like to Be a Bat? The Philosophical Review, 83(4), 435. https://doi.org/10.2307/2183914
Nambyiah, P., & Brown, A. E. X. (2021). Quantitative behavioural phenotyping to investigate anaesthesia induced neurobehavioural impairment. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-98405-x

Nguyen, J. P., Shipley, F. B., Linder, A. N., Plummer, G. S., Liu, M., Setru, S. U., Shaevitz, J. W., & Leifer, A. M. (2016). Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 113(8). https://doi.org/10.1073/pnas.1507110112

Nichols, A. L. A., Eichler, T., Latham, R., & Zimmer, M. (2017). A global brain state underlies C. Elegans sleep behavior. Science, 356(6344), 1247–1256. https://doi.org/10.1126/science.aam6851

Nicoletti, M., Loppini, A., Chiodo, L., Folli, V., Ruocco, G., & Filippi, S. (2019). Biophysical modeling of C. Elegans neurons: Single ion currents and whole-cell dynamics of AWCon and RMD. In PLoS ONE (Vol. 14, Issue 7). https://doi.org/10.1371/journal.pone.0218738

Nieder, A., Wagener, L., & Rinnert, P. (2020). A neural correlate of sensory consciousness in a corvid bird. Science, 369(6511), 1–5. https://doi.org/10.1126/science.abb1447

Nishijima, S., & Maruyama, I. N. (2017). Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans. Frontiers in Behavioral Neuroscience, 11. https://doi.org/10.3389/fnbeh.2017.00080

Nityananda, V. (2016). Attention-like processes in insects. Proceedings of the Royal Society B: Biological Sciences, 283(1842), 20161986. https://doi.org/10.1098/rspb.2016.1986

Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0. PLoS Computational Biology, 10(5). https://doi.org/10.1371/journal.pcbi.1003588

Oizumi, M., Amari, S., Yanagawa, T., Fujii, N., & Tsuchiya, N. (2016). Measuring Integrated Information from the Decoding Perspective. PLOS Computational Biology, 12(1), e1004654. https://doi.org/10.1371/journal.pcbi.1004654

Olivares, E. O., Izquierdo, E. J., & Beer, R. D. (2018). Potential role of a ventral nerve cord central pattern generator in forward and backward locomotion in Caenorhabditis elegans. Network Neuroscience, 2(3), 323–343. https://doi.org/10.1162/netn_a_00036

Palominos, M. F., Verdugo, L., Gabaldon, C., Pollak, B., Ortíz-Severín, J., Varas, M. A., Chávez, F. P., & Calixto, A. (2017). Transgenerational Diapause as an Avoidance Strategy against Bacterial Pathogens in Caenorhabditis elegans. MBio, 8(5). https://doi.org/10.1128/mBio.01234-17

Panagiotaropoulos, T. I., Deco, G., Kapoor, V., & Logothetis, N. K. (2012). Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex. Neuron, 74(5), 924–935. https://doi.org/10.1016/j.neuron.2012.04.013

Pautz, A. (2013). Does phenomenology ground mental content? In U. Kriegel (Ed.), Phenomenal Intentionality (pp. 194–234). Oxford University Press.

Pereira, A. G., Gracida, X., Kagias, K., & Zhang, Y. (2020). C. elegans aversive olfactory learning generates diverse intergenerational effects. Journal of Neurogenetics, 34(3–4), 378–388. https://doi.org/10.1080/01677063.2020.1819265

Plum, F., Schiff, N., Ribary, U., & Llinás, R. (1998). Coordinated expression in chronically unconscious persons. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1377), 1929–1933. https://doi.org/10.1098/rstb.1998.0345

Pokropski, M. (2019). Phenomenology and mechanisms of consciousness: Considering the theoretical integration of phenomenology with a mechanistic framework. Theory and Psychology, 29(5), 601–619. https://doi.org/10.1177/0959354319868769

Polák, M., & Marvan, T. (2019). How to Mitigate the Hard Problem by Adopting the Dual Theory of Phenomenal Consciousness. Frontiers in Psychology, 10(December), 1–7. https://doi.org/10.3389/fpsyg.2019.02837

Ponomarenko, E. A., Poverennaya, E. V., Ilgisonis, E. V., Pyatnitskiy, M. A., Kopylov, A. T., Zgoda, V. G., Lisitsa, A. V., & Archakov, A. I. (2016). The Size of the Human Proteome: The Width and Depth. International Journal of Analytical Chemistry, 2016. https://doi.org/10.1155/2016/7436849

Randi, F., & Leifer, A. M. (2020). Measuring and modeling whole-brain neural dynamics in Caenorhabditis elegans. Current Opinion in Neurobiology, 65, 167–175. https://doi.org/10.1016/j.conb.2020.11.001

Rankin, C. H., Beck, C. D. O., & Chiba, C. M. (1990). Caenorhabditis elegans: A new model system for the study of learning and memory. Behavioural Brain Research, 37(1), 89–92. https://doi.org/10.1016/0166-4328(90)90074-O

Rorty, R. (1979). Philosophy and the Mirror of Nature. Princeton.

Rose, J. K., & Rankin, C. H. (2001). Analyses of Habituation in Caenorhabditis elegans. Learning & Memory, 8(2), 63–69. https://doi.org/10.1101/lm.37801

Searle, J. R. (1979). The intentionality of intention and action. Inquiry (United Kingdom), 22(1–4), 253–280. https://doi.org/10.1080/00201747908601876

Siclari, F., Baird, B., Perogamvros, L., Bernardi, G., LaRocque, J. J., Riedner, B., Boly, M., Postle, B. R., & Tononi, G. (2017). The neural correlates of dreaming. Nature Neuroscience, 20(6), 872–878. https://doi.org/10.1038/nn.4545

Signorelli, C. M., Szczotka, J., & Prentner, R. (2021). Special Issue: Consciousness science and its theories Explanatory profiles of models of consciousness - Towards a systematic classification. Neuroscience of Consciousness, 2021(2), 1–13. https://doi.org/10.1093/nc/niab021

Sitt, J. D., King, J.-R., El Karoui, I., Rohaut, B., Faugeras, F., Gramfort, A., Cohen, L., Sigman, M., Dehaene, S., & Naccache, L. (2014). Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain, 137(8), 2258–2270. https://doi.org/10.1093/brain/awu141

Sneddon, L. U. (2018). Comparative physiology of nociception and pain. Physiology, 33(1), 63–73. https://doi.org/10.1152/physiol.00022.2017

Solms, M., & Friston, K. (2018). How and Why Consciousness Arises. Journal of Consciousness Studies, 25(5–6), 202–238.

Spivey, M. (2007). The Continuity of Mind. In The Continuity of Mind. https://doi.org/10.1093/acprof:oso/9780195170788.001.0001

Stiefel, K. M., Merrifield, A., & Holcombe, A. O. (2014). The claustrum’s proposed role in consciousness is supported by the effect and target localization of Salvia divinorum. Frontiers in Integrative Neuroscience, 8. https://doi.org/10.3389/fnint.2014.00020

Tagliazucchi, E. (2017). The signatures of conscious access and its phenomenology are consistent with large-scale brain communication at criticality. Consciousness and Cognition, 55(August), 136–147. https://doi.org/10.1016/j.concog.2017.08.008

Tao, Y., Xi, S., Shan, J., Maunakea, A., Che, A., Briones, V., Lee, E. Y., Geiman, T., Huang, J., Stephens, R., Leighty, R. M., Zhao, K., & Muegge, K. (2011). Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proceedings of the National Academy of Sciences, 108(14), 5626–5631. https://doi.org/10.1073/pnas.1017000108

Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews Neuroscience, 17(7), 450–461. https://doi.org/10.1038/nrn.2016.44

Tononi, G., & Koch, C. (2015). Consciousness: here, there and everywhere. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140167. https://doi.org/10.1126/SCIENCE.368.6496.1201-O

Trojanowski, N. F., & Raizen, D. M. (2016). Call it Worm Sleep. Trends in Neurosciences, 39(2), 54–62. https://doi.org/10.1016/j.tins.2015.12.005

van Vugt, B., Dagnino, B., Vartak, D., Safaai, H., Panzeri, S., Dehaene, S., & Roelfsema, P. R. (2018). The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science, 360(6388), 537–542. https://doi.org/10.1126/science.aar7186

Vanfleteren, J. R., Van De Peer, Y., Blaxter, M. L., Tweedie, S. A. R., Trotman, C., Lu, L., Van Hauwaert, M.-L., & Moens, L. (1994). Molecular Genealogy of Some Nematode Taxa as Based on Cytochrome c and Globin Amino Acid Sequences. Molecular Phylogenetics and Evolution, 3(2), 92–101. https://doi.org/10.1006/mpev.1994.1012

Vita-More, N., & Barranco, D. (2015). Persistence of Long-Term Memory in Vitrified and Revived Caenorhabditis elegans. Rejuvenation Research, 18(5), 458–463. https://doi.org/10.1089/rej.2014.1636

Ward, L. M. (2011). The thalamic dynamic core theory of conscious experience. Consciousness and Cognition, 20(2), 464–486. https://doi.org/10.1016/j.concog.2011.01.007

Webb, J., & Kato, S. (2022). Information theory rules out the reflex-chain model of <em>C. elegans</em> locomotion. BioRxiv, 2022.02.01.478702.

Wen, Q., Po, M. D., Hulme, E., Chen, S., Liu, X., Kwok, S. W., Gershow, M., Leifer, A. M., Butler, V., Fang-Yen, C., Kawano, T., Schafer, W. R., Whitesides, G., Wyart, M., Chklovskii, D. B., Zhen, M., & Samuel, A. D. T. (2012). Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion. Neuron, 76(4), 750–761. https://doi.org/10.1016/j.neuron.2012.08.039

White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 314(1165), 1–340. https://doi.org/10.1098/rstb.1986.0056

Witvliet, D., Mulcahy, B., Mitchell, J. K., Meirovitch, Y., Berger, D. R., Wu, Y., Liu, Y., Koh, W. X., Parvathala, R., Holmyard, D., Schalek, R. L., Shavit, N., Chisholm, A. D., Lichtman, J. W., Samuel, A. D. T., & Zhen, M. (2021). Connectomes across development reveal principles of brain maturation. Nature, 596(7871), 257–261. https://doi.org/10.1038/s41586-021-03778-8

Wu, Y., Masurat, F., Preis, J., & Bringmann, H. (2018). Sleep Counteracts Aging Phenotypes to Survive Starvation-Induced Developmental Arrest in C. elegans. Current Biology, 28(22), 3610-3624.e8. https://doi.org/10.1016/j.cub.2018.10.009

Yang, W., Wu, T., Tu, S., Qin, Y., Shen, C., Li, J., Choi, M. K., Duan, F., & Zhang, Y. (2022). Redundant neural circuits regulate olfactory integration. PLoS Genetics, 18(1), 1–26. https://doi.org/10.1371/journal.pgen.1010029

Yehuda, R., & Lehrner, A. (2018). Intergenerational transmission of trauma effects: putative role of epigenetic mechanisms. World Psychiatry, 17(3), 243–257. https://doi.org/10.1002/wps.20568

Zahavi, D. (2003). Intentionality and phenomenality. A phenomenological take on the hard problem. Canadian Journal of Philosophy, 33(1), 63–92.

Zhang, Q., & Tian, Y. (2022). Molecular insights into the transgenerational inheritance of stress memory. Journal of Genetics and Genomics, 49(2), 89–95. https://doi.org/10.1016/j.jgg.2021.11.015

Zhang, Y., Lu, H., & Bargmann, C. I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 438(7065), 179–184. https://doi.org/10.1038/nature04216

Descargas

Los datos de descargas todavía no están disponibles.

Citado por