Dimensions

PlumX

Cómo citar
Monteiro, F., Rodrigues , P., Santos, I. M., Bem-Haja, P., & Rosa, P. J. (2023). FamFac – Una base de datos de caras famosas para experimentos de psicología. International Journal of Psychological Research, 16(2), 31–41. https://doi.org/10.21500/20112084.6498
Términos de licencia
The work that is sent to this journal must be original, not published or sent to be published elsewhere; and if it is accepted for publication, authors will agree to transfer copyright to International Journal of Psychological Research. 

To give up copyright, the authors allow that, International Journal of Psychological Research, distribute the work more broadly, check for the reuse by others and take care of the necessary procedures for the registration and administration of copyright; at the same time, our editorial board represents the interests of the author and allows authors to re-use his work in various forms. In response to the above, authors transfer copyright to the journal, International Journal of Psychological Research. This transfer does not imply other rights which are not those of authorship (for example those that concern about patents). Likewise, preserves the authors rights to use the work integral or partially in lectures, books and courses, as well as make copies for educational purposes. Finally, the authors may use freely the tables and figures in its future work, wherever make explicit reference to the previous publication in International Journal of Psychological Research. The assignment of copyright includes both virtual rights and forms of the article to allow the editorial to disseminate the work in the manner which it deems appropriate. 

The editorial board reserves the right of amendments deemed necessary in the application of the rules of publication.

Resumen

Introducción. La existencia de una gran variación en las propiedades de bajo nivel de estímulos visuales y la ocurrencia de diversos grados de familiaridad con rostros famosos pueden haber causado un sesgo en los resultados de las investigaciones que intentaron desentrañar los procesos involucrados en el procesamiento de rostros familiares y desconocidos (por ejemplo, las diferencias temporales en la detección de los primeros potenciales relacionados con eventos especializados en el procesamiento de rostros puede ser explicada por diferentes métodos para controlar la variación en las propiedades de bajo nivel de los estímulos visuales). Objetivo. Para mitigar estos problemas,
desarrollamos una base de datos de 183 caras famosas, disponible gratuitamente, cuyas propiedades de bajo nivel (brillo, tamaño, resolución) fueron homogeneizados y el
nivel de familiaridad medido. Método. El brillo de los estímulos fue estandarizado por un algoritmo personalizado. El tamaño y la resolución de las imágenes fueran homogeneizadas en Gimp. El nivel de familiaridad de los rostros famosos fue medido por un grupo de 48 estudiantes universitarios portugueses. Resultados. Nuestros resultados sugirieron que el brillo de cada imagen no difiere significativamente del valor de brillo
medio del conjunto de estímulos. Cuarenta y un rostros famosos fueron clasificados como altamente familiares. Principales implicaciones. Este estudio proporciona dos
recursos importantes, ya que tanto el algoritmo como la base de datos están disponibles gratuitamente para fines de investigación. Los procedimientos de homogeneización
deben garantizar que los estímulos incluidos en la base de datos no provoquen efectos de confusión como los verificados en estudios anteriores.

Palabras clave:

Referencias

Andrews, T. J., Watson, D. M., Rice, G. E., & Hartley, T. (2015). Low-level properties of natural images predict topographic patterns of neural response in the ventral visual pathway. Journal of Vision, 15(7), 1–12. https://doi.org/10.1167/15.7.3.

Bainbridge, W. A., & Oliva, A. (2015). A toolbox and sample object perception data for equalization of natural images. Data in Brief, 5, 846–851. https://doi.org/10.1016/j.dib.2015.10.030.

Bentin, S., & Deouell, L. Y. (2000) Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cognitive Neuropsychology, 17(1–3), 35–55. https://doi.org/10.1080/026432900380472.

Bizzozero, I., Lucchelli, F., Saetti, M. C., & Spinnler, H. (2007). “Whose face is this?”: Italian norms of naming celebrities. Neurological Sciences, 28(6), 315-322. https://doi.org/10.1007/s10072-007-0845-6.

Brannan, J. R., Solan, H. A., Ficarra, A. P., & Ong, E. (1998). Effect of luminance on visual evoked potential amplitudes in normal and disabled readers. Optometry and Vision Science: Official Publication of the American Academy of Optometry, 75(4), 279-283. https://doi.org/10.1097/00006324-199804000-00025.

Bruce, V., Henderson, Z., Greenwood, K., Hancock, P. J., Burton, A. M., & Miller, P. (1999). Verification of face identities from images captured on video. Journal of Experimental Psychology: Applied, 5(4), 339. https://doi.org/10.1037/1076-898X.5.4.339.

Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305–327. https://doi.org/10.1111/j.2044-8295.1986.tb02199.x.

Burton, A. M., Bruce, V., & Hancock, P. J. (1999). From pixels to people: a model of familiar face recognition. Cognitive Science, 23(1), 1–31. https://doi.org/10.1207/s15516709cog2301_1.

Cocker, K. D., Moseley, M. J., Bissenden, J. G., Fielder, A. R. (1994). Visual acuity and pupillary responses to spatial structure in infants. Investigative Ophthalmology & Visual Science. 35, 2620-2625.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Dubois, S., Rossion, B., Schiltz, C., Bodart, J. M., Michel, C., Bruyer, R., & Crommelinck, M. (1999). Effect of familiarity on the processing of human faces. Neuroimage, 9, 278-289. https://doi.org/10.1006/nimg.1998.0409.

Dragoi, V., Sharma, J. & Sur, M. (2000). Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron, 28(1), 287–298. https://doi.org/10.1016/S0896-6273(00)00103-3.

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/B
F03193146.

Fife-Schaw, C. (2006). Levels of measurement In G. M. Breakwell, S. Hammond, C. Fife-Schaw, & J. A. Smith (Eds.), Research Methods in Psychology. (pp. 147-157). Sage Publications.

Gosling, A., & Eimer, M. (2011). An event-related brain potential study of explicit face recognition. Neuropsychologia, 49(9), 2736–2745. https://doi.org/10.1016/j.neuropsychologia.2011.05.025.

Heap, L. A., Vanwalleghem, G., Thompson, A. W., Favre-Bulle, I. A., & Scott, E. K. (2018). Luminance changes drive directional startle through a thalamic pathway. Neuron, 99(2), 293-301. https://doi.org/10.1016/j.neuron.2018.06.013.

Johnston, R. J., & Edmonds, A. J. (2009). Familiar and unfamiliar face recognition: a review. Memory, 17(5), 577–596. https://doi.org/10.1080/09658210902976969.

Kamitani, Y. & Tong, F. (2006). Decoding seen and attended motion directions from activity in the human Visual Cortex. Current Biology, 16(11), 1096–1102. https://doi.org/10.1016/j.cub.2006.04.003.

Knebel, J. F., Toepel, U., Hudry, J., Le Coutre, J., & Murray, M. M. (2008). Generating controlled image sets in cognitive neuroscience research. Brain Topography, 20(4), 284–289. https://doi.org/10.1007/s10548-008-0046-5.

Lakens, D., Fockenberg, D. A., Lemmens, K. P., Hamm, J., & Miden, C. J. (2013). Brightness differences influence the evaluation of affective pictures. Cognition and Emotion, 27(7), 1225–1246. https://doi.org/10.1080/02699931.2013.781501.

Leibenluft, E., Gobbini, M. I., Harrison, T., & Haxby, J. V. (2004). Mothers’ neural activation in response to pictures of their children and other children. Biological Psychiatry, 56(4), 225–232. https://doi.org/10.1016/j.biopsych.2004.05.017.

Lima, D., Pinto, R., & Albuquerque, P. B. (2021). Recognition and naming test of the Portuguese population for national and international celebrities. Behavior Research Methods, 53(6), 2326-2337. https://doi.org/10.3758/s13428-021-01572-y.

Longmore, C. A., Santos, I. M., Silva, C. F., Hall, A., Faloyin, D., Little, E. (2017). Image dependency in the recognition of newly learnt faces. Quarterly Journal of Experimental Psychology, 70(5), 863-873. https://doi.org/10.1080/17470218.2016.1236825.

Marful, A., Díez-Álamo, A. M., Plaza-Navas, S., & Fernandez, A. (2018). A normative study for photographs of celebrities in Spain. Plos One, 13(5), e0197554. https://doi.org/10.1371/journal.pone.0197554.

McCourt, M. E., & Foxe, J. J. (2003). Brightening prospects for “early” corticol coding of perceived luminance. Journal of Vision, 3(9), 49–56. https://doi.org/10.1167/3.9.424.

Natu, V., & O’Toole, A. J. (2011). The neural processing of familiar and unfamiliar faces: a review and synopsis. British Journal of Psychology, 102(4), 726–747. https://doi.org/10.1111/j.2044-8295.2011.02053.x.

Nessler, D., Mecklinger, A., & Penney, T. B. (2005). Perceptual fluency, semantic familiarity and recognition-related familiarity: an electrophysiological exploration. Cognitive Brain Research, 22(2), 265–288. https://doi.org/10.1016/j.cogbrainres.2004.03.023.

Orquin, J. L., Loose, S. M. (2013). Attention and choice: A review on eye movements in decision making. Acta Psychologica, 144(1), 190-206. https://doi.org/10.1016/j.actpsy.2013.06.003.

Park, S., Konkle, T., & Oliva, A. (2015). Parametric coding of the size and clutter of natural scenes in the human brain. Cerebral Cortex, 25(7), 1792-1805. https://doi.org/10.1093/cercor/bht418.

Prajapati, B., Dunne, M., & Armstrong, R. (2010). Sample size estimation and statistical power analyses. Optometry Today, 16(7), 10-18.
Ramon, M., Caharel, S., & Rossion, B. (2011). The speed of recognition of personally familiar faces. Perception, 40(4), 437–449. https://doi.org/10.1068/p6794.

Schettino, A., Keil, A., Porcu, E., & Müller, M. M. (2016). Shedding light on emotional perception: interaction of brightness and semantic content in extrastriate visual cortex. NeuroImage, 133, 341–353. https://doi.org/10.1016/j.neuroimage.2016.03.020.

Schindler, S., Schettino, A., Pourtois, G. (2018). Electrophysiological correlates of the interplay between low-level visual features and emotional content during word reading. Scientific Reports, 8, 1-13. https://doi.org/10.1038/s41598-018-30701-5.

Stacey, P. C., Walker, S., & Underwood, J. D. (2005). Face processing and familiarity: evidence from eye-movement data. British Journal of Psychology, 96(4), 407–422. https://doi.org/10.1348/000712605X47422.

UNESCO. (2018). The Creative Commons licenses. UNESCO. https://en.unesco.org/open-access/creative-commons-licenses.
Valentine, T., Lewis, M. B., & Hills, P. J. (2016). Face-space: A unifying concept in face recognition research. Quarterly Journal of Experimental Psychology, 69(10), 1996-2019. https://doi.org/10.1080/17470218.2014.990392.

Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684. https://doi.org/10.3758/BRM.42.3.671.

Descargas

Los datos de descargas todavía no están disponibles.

Citado por