To give up copyright, the authors allow that, International Journal of Psychological Research, distribute the work more broadly, check for the reuse by others and take care of the necessary procedures for the registration and administration of copyright; at the same time, our editorial board represents the interests of the author and allows authors to re-use his work in various forms. In response to the above, authors transfer copyright to the journal, International Journal of Psychological Research. This transfer does not imply other rights which are not those of authorship (for example those that concern about patents). Likewise, preserves the authors rights to use the work integral or partially in lectures, books and courses, as well as make copies for educational purposes. Finally, the authors may use freely the tables and figures in its future work, wherever make explicit reference to the previous publication in International Journal of Psychological Research. The assignment of copyright includes both virtual rights and forms of the article to allow the editorial to disseminate the work in the manner which it deems appropriate.
The editorial board reserves the right of amendments deemed necessary in the application of the rules of publication.
Resumen
Este estudio se centra en comprender la codificación visual en múltiples áreas del cerebro y sus implicaciones para el procesamiento neural en el sistema visual. Se destaca el uso de registros simultáneos de grandes poblaciones neuronales para investigar cómo se codifica y procesa la información visual en el cerebro. Al estudiar la actividad de múltiples áreas cerebrales, el artículo tiene como objetivo desvelar los mecanismos subyacentes a la percepción visual a nivel cerebral y proporcionar ideas sobre la base neural del procesamiento visual. Los hallazgos de esta investigación contribuyen al campo más amplio de la neurociencia y tienen implicaciones para entender los trastornos visuales y desarrollar intervenciones terapéuticas.
Palabras clave:
Referencias
reflex and voluntary contractions". J. Physiol., 67, 119–151.
Adrian, E. D., & Zotterman, Y. (1926, August). The impulses produced by sensory nerve endings: Part 3. impulses set up by touch and pressure. J. Physiol., 61(4), 465–483.
Allen, A. E., Procyk, C. A., Howarth, M., Walmsley, L., & Brown, T. M. (2016). Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order. The Journal of Physiology, 594(7), 1911–1929.
Amaral, D., Insausti, R., & Paxinos, G. (1990). The human nervous system.
San Diego: Academic, 711–755.
Andersen, P., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (2007). The hippocampal formation. Oxford University Press.
Arnts, H., Coolen, S. E., Fernandes, F. W., Schuurman, R., Krauss, J. K., Groe- newegen, H. J., & van den Munckhof, P. (2023, February). The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun, 5(3), fcad003.
Bourboulou, R., Marti, G., Michon, F.-X., El Feghaly, E., Nouguier, M., Robbe, D., Koenig, J., & Epsztein, J. (2019). Dynamic control of hippocampal spatial coding resolution by local visual cues. Elife, 8, e44487.
Cohen, M. R., & Kohn, A. (2011, June). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811–819.
Coolen, L. M., Veening, J. G., Wells, A. B., & Shipley, M. T. (2003). Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. Journal of Comparative Neurology, 463(2), 132–156.
Covington, B. P., & Al Khalili, Y. (2019). Neuroanatomy, nucleus lateral geniculate. StatPearls Publishing
Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Barthó, P., Wise, K. D., & Buzsáki, G. (2003, August). Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol., 90(2), 1314–1323. https://doi.org/10.1152/jn.00116.2003
Ding, S.-L. (2013). Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. Journal of Comparative Neurology, 521(18), 4145–4162.
Durand, S., Heller, G. R., Ramirez, T. K., Luviano, J. A., Williford, A., Sullivan, D. T., Cahoon, A. J., Farrell, C., Groblewski, P. A., Bennett, C., Siegle, J. H., & Olsen, S. R. (2023, February). Acute head-fixed recordings in awake mice with multiple neuropixels probes. Nature Protocols, 18(2), 424–457. https://doi.org/10.1038/s41596-022-00768-6
Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science, 327(5965), 584–587.
Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters, 27(8), 861–874.
Fontenele, A. J., de Vasconcelos, N. A. P., Feliciano, T., Aguiar, L. A. A., Soares- Cunha, C., Coimbra, B., Dalla Porta, L., Ribeiro, S., Rodrigues, A. J., Sousa, N., Carelli, P. V., & Copelli, M. (2019, May). Criticality between cortical states. Physcal. Review Letters, 122(20), 208101. https://doi.org/10.1103/PhysRevLett.122.208101
Gauriau, C., & Bernard, J.-F. (2004). Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. Journal of Neuroscience, 24(3), 752–761.
Hong, G., & Lieber, C. M. (2019). Novel electrode technologies for neural recordings. Nature Reviews Neuroscience, 20(6), 330–345.
Hubel, D. H. (1957, March). Tungsten microelectrode for recording from single units. Science, 125(3247), 549–550.
Hubel, D. H., & Wiesel, T. N. (1959, October). Receptive fields of single neurones in the cat’s striate cortex. J. Physiol., 148(3), 574–591.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 106.
Hubel, D. H., & Wiesel, T. N. (1968, March). Receptive fields and functional architecture of monkey striate cortex. J. Physiol., 195(1), 215–243.
Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005, November). Fast readout of object identity from macaque inferior temporal cortex. Science, 310(5749), 863–866.
Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., B., Lee, A. K., Anastassiou, C. A., Andrei, A., Aydın, Ç., Barbic, M., Blanche, T. J., Bonin, V., Couto, J., Dutta, B., Gratiy, S. L., Gutnisky, D. A., Häusser, M., Karsh, B., Ledochowitsch, P., . . . Harris, T. D. (2017, November). Fully integrated silicon probes for high-density recording of neural activity. Nature, 551(7679), 232–236. https://doi.org/10.1038/nature24636
Kandel, E. R. (2013). Principles of neural science (5th ed.). McGraw- Hill.
Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217–230.
Lashley, K. S. (1930). Basic neural mechanisms in behavior. Psychological review, 37(1), 1.
LeDoux, J. E., Sakaguchi, A., & Reis, D. J. (1984). Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. Journal of Neuroscience, 4(3), 683–698.
Marshel, J. H., Garrett, M., Garrett, M. E., Nauhaus, I., & Callaway, E. M. (2011). Functional specialization of seven mouse visual cortical areas. Neuron, 72(6), 1040-1054. https://doi.org/10.1016/j.neuron.2011.12.004
Nicolelis, M. A., Ghazanfar, A. A., Faggin, B. M., Votaw, S., & Oliveira, L. M. (1997, April). Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron, 18(4), 529–537.
Nicolelis, M. A., & Lebedev, M. A. (2009). Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature reviews neuroscience, 10(7), 530–540.
Nicolelis, M. A. L., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G., Kralik, J. D., & Wise, S. P. (2003, September). Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. U. S. A., 100(19), 11041–11046.
Niell, C. M., & Stryker, M. P. (2008, July). Highly selective receptive fields in
mouse visual cortex. Journal of Neuroscience, 28(30), 7520–7536.
O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat.
Experimental neurology, 51(1), 78–109.
O’Mara, S. (2005). The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. Journal of anatomy, 207(3), 271–282.
Paxinos, G., & Franklin, K. (2001). The mouse brain in stereotaxic coordinates. Academic press.
Powell, T. P., & Mountcastle, V. B. (1959, September). Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp., 105, 133–162.
Prusky, G., & Douglas, R. (2004). Characterization of mouse cortical spatial vision. Vision research, 44(28), 3411-3418. https://doi.org/10.1016/j.visres.2004.09.001
Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K. D. (2010, January). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.
Ringach, D. L. (2004). Mapping receptive fields in primary visual cortex. The Journal of Physiology, 558(3), 717–728.
Roth, M. M., Helmchen, F., & Kampa, B. M. (2012). Distinct functional properties of primary and posteromedial visual area of mouse neocortex. The Journal of Neuroscience, 32(28), 9716-9726. https://doi.org/10.1523/jneurosci.0110-12.2012
Smith, P. H., Manning, K. A., & Uhlrich, D. J. (2010). Evaluation of inputs to rat primary auditory cortex from the suprageniculate nucleus and extrastriate visual cortex. Journal of Comparative Neurology, 518(18), 3679–3700.
Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., . . . Harris, T. D. (2021, April). Neuropixels 2.0: A miniaturized high- density probe for stable, long-term brain recordings. Science, 372(6539).
Steinmetz, N. A., Koch, C., Harris, K. D., & Carandini, M. (2018). Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Current opinion in neurobiology, 50, 92–100.
Stevenson, I. H., & Kording, K. P. (2011, February). How advances in neural recording affect data analysis. Nat. Neurosci., 14(2), 139–142.
Trautmann, E. M., Hesse, J. K., Stine, G. M., Xia, R., Zhu, S., O’Shea, D. J., Karsh, B., Colonell, J., Lanfranchi, F. F., Vyas, S., Zimnik, A., Steinmann, N. A., Wagenaar, D. A., Andrei, A., Lopez, C. M., O'Callaghan, J., Putzeys, J., Raducanu, B. C., Welkenhuysen, M., Churchland, M., . . . Harris, T. (2023, May). Large-scale high-density brain-wide neural recording in nonhuman primates. bioRxiv. https://doi.org/10.1101/2023.02.01.526664
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). MIT Press.
Wang, Q., & Burkhalter, A. (2007). Area map of mouse visual cortex. The Journal of Comparative Neurology, 502(3), 339-357. https://doi.org/10.1002/cne.21286
Watson, C., Paxinos, G., & Puelles, L. (2011). The mouse nervous system.
Academic Press.
Whitlock, J. R., Sutherland, R. J., Witter, M. P., Moser, M.-B., & Moser, E. I. (2008). Navigating from hippocampus to parietal cortex. Proceedings of the National Academy of Sciences, 105(39), 14755–14762.
Zrinzo, L., Zrinzo, L. V., & Hariz, M. (2007). The peripeduncular nucleus: a novel target for deep brain stimulation? Neuroreport, 18(15), 1631–1632.