La Revista Guillermo de Ockham brinda un acceso inmediato y abierto a su contenido, basado en el principio de ofrecer al público un acceso gratuito a las investigaciones para brindar un intercambio global de conocimiento. A menos que se establezca lo contrario, el contenido de esta revista tiene una licencia con Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) http://creativecommons.org/licenses/by-nc-nd/4.0/
- Atribución: debe otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
- No comercial: no puede utilizar el material con fines comerciales.
- Sin derivados: si remezcla, transforma o construye sobre el material, no puede distribuir el material modificado.
- Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros de hacer cualquier cosa que permita la licencia.
Resumen
In this article, the aerodynamic behavior of a commuter train operating at average speeds is evaluated, by means of computational fluid dynamics; the main goal is to identify the main aerodynamic drag sources. The study consist of two phases; the first one is the aerodynamic analysis of the current train using certain mesh parameters and the turbulence model – to obtain a real condition of operation, with this analysis was obtained the total power consumption corresponding to the value of the aerodynamic drag thrown by the simulation process. These results were qualitatively compared with experimental data in order to validate the simulation process. The second part is the identification and analysis of the main aerodynamic drag zones that the Metro system generate in its interaction with the air, to make a preliminary evaluation of a few modifications that allowed the reduction in the drag in these critical
Palabras clave:
Referencias
AUGUSTIN, Kai, RIST, Ulrich, and WAGNER, Siegfried. (2012) Control of Laminar Separation Bubbles by Small-Amplitude 2D and 3D Boundary-Layer Disturbances. Universität Stuttgart; Institut für Aerodynamik und Gasdynamik, Pfaffenwaldring 21, 70550 Stuttgart, Germany.
BAKER, Chris. (2010) The flow around high speed trains. Journal of Wind Engineering and Industrial Aerodynamics 98 277–298.
BAKER, Chris. (2010) The simulation of unsteady aerodynamic cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics 98 88–99.
BEAUDOINA, J.F., CADOTB, O., AIDERC, J.L., and WESFREID, J.E. (2006) Bluff-body drag reduction by extremum-seeking control. Journal of Fluids and Structures 22 973–978.
CHELI, F., RIPAMONTI, F., ROCCHI, D., and TOMASINI, G. (2010) Aerodynamic behavior investigation of the new EMUV 250 train to cross wind. Journal of Wind Engineering and Industrial Aerodynamics 98 189–201.
LAM, K. M and WEI, C. T. (2010) Numerical simulation of vortex shedding from an inclined flat plate. Engineering Applications of Computational Fluid Mechanics Vol.45, No.4, pp 569-579.
LIENHART, Hermann, BREUER, Michael, and and KÖKSOY, Cagatay. (2008) Drag reduction by dimples? – A complementary experimental/numerical investigation. International Journal of Heat and Fluid Flow 29 783–791.
ORTEGA, Jason M. and SALARI, Kambiz. (2005) Apparatus and method for reducing drag of a bluff body in ground effect using counter-rotating vortex pairs. United States Patent.
RAGHUNATHANA, S. RAGHU, Kimb, H.-D., and SETOGUCHIC, T. (2002) Aerodynamics of high-speed railway train. Progress in Aerospace Sciences 38 469–514.
SALARI, Kambiz, et al. (2006) Heavy Vehicle Drag Reduction Devices: Computational Evaluation & Design. DOE Heavy Vehicle Systems Review.
ÜNAL, Ugur Oral and GÖREN Ömer. (2011) Effect of vortex generators on the flow around a circular cylinder: Computational investigation with two-equation turbulence models. Engineering Applications of Computational Fluid Mechanics Vol. 5, No.1, pp 99-116.
WOOD, Richard M., y BAUER, Steven X. S. (2003) Simple and Low-Cost Aerodynamic Drag Reduction Devices for Tractor-Trailer Trucks. SOLUS – Solutions and Technologies.