Ingenierías USBMed
Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami

Versiones

pdf

Palabras clave

Origami
metamateriales
Acústica arquitectónica
cinética
plegado
diseño

Cómo citar

Alzate Arias, F. A. (2022). Prospectiva de diseño de dispositivos acusticos con metamateriales. Técnicas origami. Ingenierías USBMed, 13(2), 35–47. https://doi.org/10.21500/20275846.4495 (Original work published 27 de septiembre de 2022)

Resumen

Este trabajo hace una busqueda exhaustiva en base de datos académicas sobre  proyectos que tienen que ver con estructuras, dispositivos acústicos activos inspirados en metamateriales y en formas creadas a partir de patrones que se ven en la naturaleza, el enfoque del trabajo es dar una mirada a manera prospectiva de los diferentes escenarios que resultan de los diferentes proyectos que innovadores en la acústica arquitectónica, también como un aporte de vigilancia tecnológica y estrado de arte  sobre este tipo de dispositvos. Se expone un informe detallado de cual es la estado actual de la producción científica en este campo y como está nuestro pais con repecto a otros paises teniendo en cuenta que la acústica arquitectónica confluye en nmuchas aéras de conocimiento como son los materiales, la ingeniería civil, la física y el diseño, combinando la ciencia,  el arte, la tecnología e innovación como vertientes principales del grupo de investigacón de la Facultad be Artes y Humanidades del Intesituto Técnológico Metropolitano

 

https://doi.org/10.21500/20275846.4495
pdf

Citas

R.Walser, “Metamaterials: What are they? What are they good for?,” ene. 2000.

“WIPO - Search International and National Patent

Collections”. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-L5B9XI-82878 (accessed June 7, 2019).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f92d0e0bdd5bafb137f428f41c13be35&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++metamaterials+nanomaterials%29&sort=plf-f&sdt=b&sot=b&sl=53&count=7&analyzeResults=Analyze+results&txGid=16f5a0d320ad451bb028fedb0d988f15 (accessed May 16, 2019).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=39d348ee250df998cc73d949b8cddfc8&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics++materials%29&sort=plff&sdt=b&sot=b&sl=35&count=80940&analyzeResults=Analyze+results&txGid=475d8e8395612e632983b3068e786e1a (accessed May 20, 2019).

“ScienceDirect Search Results - Keywords (materials acoustics)”. https://sciencedirect.bibliotecaitm.elogim.com/search?qs=materials%20acoustics&years=2003%2C2004%2C2005%2C2006%2C2007%2C2008%2C2009%2C2018%2C2017%2C2016%2C2015%2C2014%2C2013%2C2012%2C2011%2C2010&articleTypes=FLA&sortBy=relevance&publicationTitles=271440&lastSelectedFacet=publicationTitles (accessed June 7, 2019).

“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=acoustics++AND+materials++AND+noise&sid=353ba33aa82f014c50e0

dc7896c4c4&sot=b&sdt=b&sl=50&s=TITLEABS-KEY%28acoustics++AND+materials++AND+noise%29&origin=searchbasic&editSaveSea

rch=&yearFrom=Before+1960&yearTo=Present(accessed July 7, 2019).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=513058b33fa3cdacd83338d8f8731e8d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28acoustics+panels+noise%29&sort=plf-f&sdt=b&sot=b&sl=37&count=3472&analyzeResults=Analyze+results&txGid=f0e5c2f110ccc9cbce18f68f9c383594 (accessed May 24, 2019).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=f432f78bb8622fb777103db09bfbedb0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Acoustics+and+panels%29&sort=plf-f&sdt=b&sot=b&sl=35&count=7906&analyzeResults=Analyze+results&txGid=8c9ba5666cab7dbc8b3cfda01

e6f20c (accessed May 25, 2019).

“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=origami+acoustics&sid=33d374daffc103b360e9a3ad606af6cf&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28origami+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2019).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid

=60d2b163e3c397db07502e7ceb2fccf0&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+folded+acoustics%29&sort=plf-f&sdt=b&s ot=b&sl=39&count=11&analyzeResults=Analyze+results&txGid=6d4b15dbd99a0625b6692527e055603d (accessed May 13, 2019).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=c7e795144faed70b5f055b88bf062332&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami+panel+acoustics%29&sort=plff&sdt=b&sot=b&sl=38&count=7&analyzeResults=Analyze+results&txGid=e185430da799838902091b86750e43a (accessed May 14, 2019).

“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=origami++architectural+geometry&sid=0a16d1c1f15117de1cc89234aee6d30b&sot=b&sdt=b&sl=46&s=TITLE-ABS-KE

Y%28origami++architectural+geometry%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 8, 2019).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=0a16d1c1f15117de1cc89234aee6d30b&origin=resultslist&src=s&s=TITLE-ABS-KEY%28origami++architectural+geometry%29&sort=plf-f&sdt=b&sot=b&sl=46&count=39&analyzeResults=Analyze+results&txGid=8de4da2290832e5ae1b2236f0c02a041 (accessed June 8, 2019).

“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sor

t=plf-f&src=s&st1=metamaterials+acoustics&sid=715a1bca93a42908f79df5b09c9024d1&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 7, 2020).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=715a1bca93a42908f79df5b09c9024d1&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics%29&sort=plf-f&sdt=b&sot=b&sl=38&count=3460&analyzeResults=Analyze+results&txGid=73d3f72662e040249175e177eee7a6df(accessed June 7, 2020).

“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plff&src=s&st1=acoustic+metamaterials+resonator&sid=62ff9286413a9c8fd79469f1c0ca6257&sot=b&sdt=b&sl=47&s=TITLE-ABS-KEY%28acoustic+metamaterials+resonator%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 9, 2020).

“Scopus - Document search results”. https://scopus.bibliotecaitm.elogim.com/results/results.uri?sort=plf-f&src=s&st1=metamaterials+acoustics+origami&sid=8a446aa1d280c011d6d8903c53dc060d&sot=b&sdt=b&sl=46&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present (accessed June 6, 2020).

“Scopus - Analyze search results”. https://scopus.bibliotecaitm.elogim.com/term/analyzer.uri?sid=8a446aa1d280c011d6d8903c53dc060d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28metamaterials+acoustics+origami%29&sort=plf-f&sdt=b&sot=b&sl=46&count=25&analyzeResult

s=Analyze+results&txGid=dfce0edd4e066583197151a673a210bf (accessed June 6, 2020).

“OMPI - Búsqueda en las colecciones de patentesnacionales e internacionales”. https://patentscope.wipo.int/search/es/result.jsf?_vid=P21-L3AN78-25698 (accessed May 15, 2019).

“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/

search/en/result.jsf?_vid=P21-L3ANF7-27516 (accessed May 16, 2021).

“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/

search/en/result.jsf?_vid=P21-L3ANJT-28555 (accessed May 20, 2019).

“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/

search/en/result.jsf?_vid=P21-L3ANMC-29031 (accessed May 21, 2019).

“WIPO - Search International and National Patent Collections”. https://patentscope.wipo.int/

search/en/result.jsf?_vid=P12-L3AQ1B-59073 (accessed May 22, 2019).

M. Schenk y S. Guest, “Origami folding: A structural engineering approach”, presented at the 10th

International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available http://www2.eng.cam. ac.uk/~sdg/preprint/5OSME.pdf.

M. Schenk, J. M. Allwood y S. D. Guest, “Cold gas-pressure folding of Miura-ori sheets”, presented at the 10th International Conference on Technology of Plasticity, ICTP 2011, Asquigrán, Alemania, Sept. 25–30, 2011. Available: http://www2. eng.cam.ac.uk/~sdg/preprint/MiuraForming. pdf.

T. Tachi, “Generalization of rigid foldable quadrilateral mesh origami”, presented at the International Association for Shell and Spatial Structures (ASS) Symposium 2009, Valencia, España, Sept. 28 – Oct. 2, 2009. Available: https://iam.tug raz.at/workshop_rijeka/wp-content/uploads/201 2/09/RigidFoldableQuadMeshOrigami_tachi_IA

SS2009.pdf.

Tachi Lab, “Software. Freeform Origami”. Available https://origami.c.u- tokyo.ac.jp/~tachi/ software/

E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG. 2017.34.

M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi esperimentazione”. Ph. D. dissertation, Sapienza Università di Rom, 2017. Available: https://core.ac.uk/display/127586956? recSetID=.

H. Buri e Y.Weinand, “ORIGAMI - Folded Plate Structures, Architecture”, presented at the 10th World Conference on Timber Engineering, Miyazaki, Japón, June 2-5, 2017.

X. Yang, “Adaptive acoustic origami”. M.S. Thesis, Universidad de Melbourne, 2017. Available: https://www.youtube.com/watch v=RKOUn-J6HL4&feature=share.

Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang y L. Mahadevan, “Geometric mechanics of periodic pleated origami,” Physical Review Letters, vol. 110, n◦. 21, 2013. https://doi.org/10.1103/ PhysRevLett.110.215501.

C. Samuelsson y B. Vestlund, “Structural folding. A parametric design method for origami architecture”. M.S. Thesis, Chalmers University of Technology, Gotemburgo, Suecia, 2015. Available: https://odr.chalmers.se/handle/20.500.12380/222002.

M. Thota y K. W. Wang, “Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation,” Journal of Applied Physics, n◦ 122, 2017. https://doi.org/10.1063/1.4991026.

E. Demaine y T. Tachi, “Origamizer: A practical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational Geometry, Brisbane, Australia, Jul. 4–7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.

T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org / 10 .1115/1.4035558.

R. Resch y E. Armstrong, “The Ron Resch paper and stick film”, 1992 [Online]. Available: https://www.youtube.com/watch v=imlMspPKfNo.

R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in

architecture and manufacturing”. Ph. D. dissertation, Alma Mater Studiorum, Universidad de Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.

Robert J. Lang Origami TASON, “TreeMaker” [Online]. Available: https : / / langorigami .com/ article/treemaker/

Tachi Lab, “Software. Freeform Origami” [Online]. Available: https://origami.c.u-tokyo.ac.jp/~tachi/software/

E. Demaine y T. Tachi, “Origamizer: A ractical algorithm for folding any polyhedron”, presented at the 33rd International Symposium of Computational

Geometry, Brisbane, Australia, Jul. 4-7, 2017. https://doi.org/10.4230/LIPIcs.SoCG.2017.34.

P. Wang-Inverson, R. J. Lang and M. Yim (eds.), Origami 5. Proceedings to the Fifth International Meeting of Origami Science, Mathematics and Education, Ciudad de Nueva York, NY: AK Peters / CRC Press, 2011.

T. Tachi y T. C. Hull, “Self-foldability of rigid origami,” Journal of Mechanisms and Robotics, vol. 9, n◦ 2, Aprl., 2017. https : / / doi .org/ 10 .1115/1.4035558.

J. Mitani y T. Igarashi, “Interactive design of planar curved folding by reection”, presented at the 19th Pacific Conference on Computer Graphics and Applications, Pacific Graphics, Kaohsiung, Taiwán, Sept. 21-23. Available: https://www.jst. go.jp/erato/igarashi/publications/001/PG2011. pdf.

Origamisimulator.org [Online]. Available http:// apps.amandaghassaei.com/OrigamiSimulator/

R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in

architecture and manufacturing”. Ph. D. Thesis, Alma Mater Studiorum, Universidad de Boloña,

https://doi.org/10.6092/unibo/amsdottora to/8871.

J. M. Gattas y Z. You, “Design and digital fabrication of folded sandwich structures,” Automation in Construction, n◦ 63, pp. 79-87, March,

https://doi.org/10.1016/j.autcon.2015.12.002.

G. Epps, “RoboFold and Robots.IO,” Architectural Design, vol. 84, n◦. 3, pp. 68–69, 2014. https:

//doi.org/10.1002/ad.1757.

R. Foschi, “Algorithmic modelling of folded surfaces. Analysis and design of folded surfaces in

architecture and manufacturing”. P.h. D. dissertation, Alma Mater Studiorum, Universidad de

Boloña, 2019. https://doi.org/10.6092/unibo/amsdottorato/8871.

M. Giodice, “Modellazione parametrica e comportamento meccanico di superfici adattive in architettura: Analisi e sperimentazione”. P.h. D. dissertation, Sapienza Università di Roma, 2017. https://core.ac.uk/display/127586956?recSetID=.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2022 Ingenierías USBMed

Descargas

Los datos de descargas todavía no están disponibles.