Esta revista provee acceso libre inmediato a su contenido bajo el principio de hacer disponible gratuitamente las investigaciones al publico y apoyando un mayor intercambio de conocimiento global.
Costos de procesamiento y presentación de los artículos
El procesamiento y publicación en Ingenierías USBMed no tiene costo.
Política de acceso abierto
Ingenierías USBMed proporciona un acceso abierto inmediato a su contenido, basado en el principio de ofrecer al público un acceso libre a las investigaciones ayudando a un mayor intercambio global de conocimiento. Por tanto se acoge a la Licencia Creative Commons 4.0 Atribución- no comercial-sin derivadas (by-nc-nd): permite copiar y redistribuir el material en cualquier medio o formato, No se permite un uso comercial de la obra original ni de las posibles obras derivadas, Si remezcla, tansforma o crea a partir del material, no podrá distribuir el material modificado.
Derechos de Autor (Copyrigt)
La totalidad de los contenidos de Ingenierías USBMed, e-ISSN 2027-5846 están registrados y protegidos por las leyes de protección de la propiedad intelectual. Los derechos de propiedad intelectual de cada artículo son cedidos por sus autores a Ingenierías USBMed. Al someter el manuscrito, y únicamente en caso de ser aceptado para publicación, los autores aceptan que el copyright de su artículo queda transferido a Ingenierías USBMed. No obstante, se consideran todas las solicitudes de autorización por parte de los autores con fines de reproducción de sus artículos. Igualmente, Ingenierías USBMed otorga permiso de acceso para usuarios y bibliotecas. Ingenierías USBMed apoya el libre acceso a la literatura científica dicho copyright pide el respeto de los derechos morales, principalmente el reconocimiento de su autoría y el respeto a la integridad de la obra, evitando dentro de lo posible alteraciones, traducciones o falsificaciones. Al ser Ingenierías USBMed una publicación electrónica de carácter científico que publica trabajos de investigación científica y tecnológica, artículos de reflexión o artículos de revisión, el objetivo prioritario tanto de los los autores como de Ingenierías USBMed es lograr la mayor difusión de los artículos, para lo cual los autores ceden a Ingenierías USBMed sus derechos, únicamente a cambio del reconocimiento intelectual, moral y laboral, al considerarse que es una materia no de ocio o entretenimiento, sino de fuerte interés social, por su carácter científico.
Política Ética
Los autores deben actuar de forma ética en los procesos requeridos para la publicación de sus artículos en Ingenierías USBMed. Para esto, los autores y miembros de la revista se deben acoger a la politica de Ética editorial de la Editorial Bonaventuriana, disponible en el siguiente link: Manual editorial
Responsabilidad de contenidos
El contenido de los artículos publicados por Ingenierías USBMed es de exclusiva responsabilidad del (os) autor(es) y no necesariamente refleja el pensamiento del comité editorial y científico de la revista Ingenierías USBMed. Los textos pueden reproducirse total o parcialmente citando la fuente.
Resumen
En este paper se propone un algoritmo computacional que resuelve la ecuación de convección difusión unidimensional estacionaria, utilizando un método numérico basado en las funciones de base radial (RBF). Para la aplicación de este algoritmo es necesaria la generación de diferentes valores del número de Peclet para obtener soluciones gráficas, en donde se comparó con la solución analítica reportada por Patankar.
Referencias
V. Aswin, A. Awasthi y C. Anu, «A comparative study of numerical schemes for convection-diffusion equation,» International Conference on Computational Heat and Mass Transfer-2015, nº 127, pp. 621-627, 2015.
J. Biazar y . M. Bagher Mehrlatifan, «A Compact Finite Difference Scheme for Reaction-convection-diffusion Equation,» Chiang Mai Journal of Science, vol. 3, nº 45, pp. 1559-1568, 2017.
P. Assari y M. Dehghan, «A meshless Galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions,» Journal of Computational and Applied Mathematics, vol. 333, pp. 362-381, 2018.
J. M. Granados, C. A. Bustamante, H. Power y W. F. Florez, «A global Stokes method of approximated particular solutions for unsteady two-dimensional Navier–Stokes system of equations,» International Journal of Computer Mathematics, nº 94, pp. 1515-1541, 2016.
B. Sarlet y R. Vertnik, «Meshfree explicit locl radial basis function collocation method for diffusion problems,» Comput. Math. Appl, nº 51, pp. 1269-1282, 2006.
E. Kansa, «Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics - iL solutions to parabolic, hyperbolic and elliptic partial differential equations,» Comput. Math. Appl, nº 19, pp. 147-161, 1990.
S. Scott A, «Radial basis function approximation methods with extended precision,» Engineering Analysis with Boundary Elements, vol. 35, pp. 68-76, 2011.
W. F. Forez, H. Power y F. Chejne, «Conservative interpolation for the boundary integral solutio of the navier-stokes equations,» Computational Mechanics, nº 26, pp. 507-513, 2000.
G. Fasshauer, Solving partial differential equations by collocation with radial basis functions, A. Le Méhauté, C. Rabut, L.L. Schumaker, Surface Fitting and Multiresolution Methods, Vanderbilt University Press, 1997.
C. Bustamante, H. Power y W. Florez, «A global meshless collocation particular solution method for solving the two dimensional Navier Stokes system of equations,» Computers and Mathematics with Applications, nº 65, pp. 1929-1955, 2013.
G. Lima, V. Ferreira, E. Cirilo, A. Castelo, M. Candezano, I. Tasso, D. Sano y L. Scalvi, «A continuously differentiable upwinding scheme for the simulation of fluid flow problems,» Applied Mathematics and Computation, nº 218, pp. 8614-8633, 2012.
T. Ghaffar, M. Yousaf y S. Qamar, «Numerical solution of special ultra-relativistic Euler equations using central upwind scheme,» Results in Physics, nº 9, pp. 1161-1169, 2018.
M. Saqib, S. Hasnain y D. Suleiman Mashat, «Computational Solutions of Two Dimensional Convection Diffusion Equation Using Crank-Nicolson and Time Efficient ADI,» American Journal of Computational Mathematics, nº 7, pp. 208-227, 2017.
S. Patankar y D. Spalding, «A calculation procedure for heat, mass and momentum trnasfer in three-dimensional parabolic flows,» Int.J.Heat Mass Transfer, nº 15, pp. 1787-1806, 1972.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 1980.
W. Chen y M. Tanaka, «A meshless, integration-free, and boundary - only RBF technique,» Comput. Math. Appl, nº 43, pp. 379-391, 2002.
R. Vertnik y B. Sarlet, «Meshless local radial basis function collocation for convective-dissusive solid - liquid phase change problems,» Int. J. Numer. Methods Heat fluid Flow, vol. 16, nº 5, pp. 617-640, 2006.
A. F. Hernández Marulanda, W. F. Flórez Escobar y J. J. Bustamante Osorno, «Simulación de interacción fluido-estructura en la red vascular utilizando el método de elementos de frontera (BEM),» Revista Ingeniería Biomédica, vol. 13, nº 25, pp. 53-62, 2019.
A. Appadu, J. Djoko y H. Gidey, «A computational study of three numerical methods for some advection-diffusion problems,» Applied Mathematics, vol. 272, nº 3, pp. 629-647, 2016.
M. McGinty y G. Pontrelli, «A general model of coupled drug release and tissue absorption for drug,» Journal of Controlled Release, nº 217, pp. 327-336, 2015.
W. Chen, . Y. Linjuan y . S. Hongguang , «Fractional diffusion equations by the Kansa method,» Computers and Mathematics with Applications, nº 59, pp. 1614-1620, 2010.