Dimensions

PlumX

How to Cite
Rodríguez Martínez, G. A., & Castillo Parra, H. (2018). Bistable perception: neural bases and usefulness in psychological research. International Journal of Psychological Research, 11(2), 63–76. https://doi.org/10.21500/20112084.3375
License terms
The work that is sent to this journal must be original, not published or sent to be published elsewhere; and if it is accepted for publication, authors will agree to transfer copyright to International Journal of Psychological Research. 

To give up copyright, the authors allow that, International Journal of Psychological Research, distribute the work more broadly, check for the reuse by others and take care of the necessary procedures for the registration and administration of copyright; at the same time, our editorial board represents the interests of the author and allows authors to re-use his work in various forms. In response to the above, authors transfer copyright to the journal, International Journal of Psychological Research. This transfer does not imply other rights which are not those of authorship (for example those that concern about patents). Likewise, preserves the authors rights to use the work integral or partially in lectures, books and courses, as well as make copies for educational purposes. Finally, the authors may use freely the tables and figures in its future work, wherever make explicit reference to the previous publication in International Journal of Psychological Research. The assignment of copyright includes both virtual rights and forms of the article to allow the editorial to disseminate the work in the manner which it deems appropriate. 

The editorial board reserves the right of amendments deemed necessary in the application of the rules of publication.

Abstract

Bistable images have the possibility of being perceived in two different ways. Due to their physical characteristics, these visual stimuli allow two different perceptions, associated with top-down and bottom-up modulating processes. Based on an extensive literature review, the present article aims to gather the conceptual models and the foundations of perceptual bistability. This theoretical article compiles not only notions that are intertwined with the understanding of this perceptual phenomenon, but also the diverse classification and uses of bistable images in psychological research, along with a detailed explanation of the neural correlates that are involved in perceptual reversibility. We conclude that the use of bistable images as a paradigmatic resource in psychological research might be extensive. In addition, due to their characteristics, visual bistable stimuli have the potential to be implemented as a resource in experimental tasks that seek to understand diverse concerns linked essentially to attention, sensory, perceptual and memory processes.

Keywords:

References

Aydin, S., Strang, N. C., & Manahilov, V. (2013). Agerelated deficits in attentional control of perceptual rivalry. Vision Research, 77 , 32–40. doi: https://doi.org/10.1016/j.visres.2012.11.010

Baker, D. H., & Graf, E. W. (2010). Extrinsic factors in the perception of bistable motion stimuli. Vision Research, 50(13), 1257–1265. doi: https://doi.org/10.1016/j.visres.2010.04.016

Baker, D. H., Karapanagiotidis, T., Coggan, D. D., Wailes-Newson, K., & Smallwood, J. (2015). Brain networks underlying bistable perception. NeuroImage, 119, 229–234. doi: https://doi.org/10.1016/j.neuroimage.2015.06.053

Balcetis, E., & Dale, R. (2007). Conceptual set as a top—down constraint on visual object identification. Perception, 36(4), 581–595. doi: https://doi.org/10.1068/p5678

Barrera, M., & Calderón, L. (2013). Notes for supporting an epistemological neuropsychology: contributions from three perspectives. International Journal of Psychological Research, 6(2), 107–118.

Basar-Eroglu, C., Mathes, B., Khalaidovski, K., Brand, A., & Schmiedt-Fehr, C. (2016). Altered alpha brain oscillations during multistable perception in schizophrenia. International Journal of Psychophysiology,103, 118–128. doi: https://doi.org/10.1016/j.ijpsycho.2015.02.002

Bialystok, E., & Shapero, D. (2005). Ambiguous benefits: The effect of bilingualism on reversing ambiguous figures. Developmental Science, 8(6), 595–604. doi: https://doi.org/10.1111/j.1467-7687.2005.00451.x

Borisyuk, R., Chik, D., & Kazanovich, Y. (2009). Visual perception of ambiguous figures: synchronization based neural models. Biological Cybernetics, 100(6), 491–504. doi: 10.1007/s00422-009-0301-1

Borisyuk, R., & Hoppensteadt, F. (2004). A theory of epineuronal memory. Neural Networks, 17 (10), 1427–1436. doi: https://doi.org/10.1016/j.neunet.2004.07.006

Brascamp, J. W., Klink, P. C., & Levelt, W. J. M. (2015). The “laws” of binocular rivalry: 50 years of Levelt’s propositions. Vision Research, 109, 20–37. doi: https://doi.org/10.1016/j.visres.2015.02.019

Brouwer, G. J., & van Ee, R. (2006). Endogenous influences on perceptual bistability depend on exogenous stimulus characteristics. Vision Research, 46(20), 3393–3402. doi: https://doi.org/10.1016/j.visres.2006.03.016

Carroll, S. R., & Bressloff, P. C. (2014). Binocular rivalry waves in a directionally selective neural field model. Physica D: Nonlinear Phenomena, 285, 8–17. doi: https://doi.org/10.1016/j.physd.2014.07.002

Castelo-Branco, M., & Castelhano, J. (2015). Perceptual decision making. In A. W. Toga (Ed.), Brain Mapping (p. 401 - 408). Waltham: Academic Press. doi: https://doi.org/10.1016/B978-0-12-397025-1.00261-X

Chung-Fat-Yim, A., Sorge, G. B., & Bialystok, E. (2017). The relationship between bilingualism and selective attention in young adults: evidence from an ambiguous figures task. The Quarterly Journal of Experimental Psychology, 70(3), 366–372. doi: https://doi.org/10.1080/17470218.2016.1221435

Clément, G., & Demel, M. (2012). Perceptual reversal of bi-stable figures in microgravity and hypergravity during parabolic flight. Neuroscience Letters, 507 (2), 143–146. doi: https://doi.org/10.1016/j.neulet.2011.12.006

Clément, G., & Eckardt, J. (2005). Influence of the gravitational vertical on geometric visual illusions. Acta Astronautica, 56(9-12), 911–917. doi: https://doi.org/10.1016/j.actaastro.2005.01.017

Cumming, B. G., & Parker, A. J. (1997). Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 389(6648), 280. doi: 10.1038/38487

Denham, S., Bendixen, A., Mill, R., Tóth, D., Wennekers, T., Coath, M., … Winkler, I. (2012). Characterising switching behaviour in perceptual multi-stability. Journal of Neuroscience Methods, 210(1), 79 - 92. doi: https://doi.org/10.1016/j.jneumeth.2012.04.004

de Weert, C. M. M., Snoeren, P. R., & Koning, A. (2005). Interactions between binocular rivalry and Gestalt formation. Vision Research, 45(19), 2571–2579. doi: https://doi.org/10.1016/j.visres.2005.04.005

Fagard, J., Sacco, S., Yvenou, C., Domellöf, E., Kieffer, V., Tordjman, S., … Mamassian, P. (2008). The role of the corpus callosum in the perception of reversible figures in children. Vision Research, 48(23-24), 2451–2455. doi: https://doi.org/10.1016/j.visres.2008.08.007

Feist, M. I., & Gentner, D. (2007). Spatial language influences memory for spatial scenes. Memory & Cognition, 35(2), 283–296. doi: 10.3758/BF03193449

Fukuda, H., & Blake, R. (1992). Spatial interactions in binocular rivalry. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 362. doi: http://dx.doi.org/10.1037/0096-1523.18.2.362

Gale, A. G., & Findlay, J. M. (1983). Eye movement patterns in viewing ambiguous figures. Eye movements and psychological functions: International views, 145–168.

García-Pérez, M. A. (1989). Visual inhomogeneity and eye movements in multistable perception. Attention, Perception, & Psychophysics, 46(4), 397–400. doi: https://link.springer.com/content/pdf/10.3758/BF03204995.pdf

García-Pérez, M. A. (1992). The role of eye movements in perceptual processes. In E. Chekaluk & K. Llewellyn (Eds.), (Vol. 88, pp. 73–109). Amsterdam- London - New York - Tokyo: North-Holland: Elsevier. doi: https://doi.org/10.1016/S0166-4115(08)61743-4

Goolkasian, P., & Woodberry, C. (2010). Priming effects with ambiguous figures. Attention, Perception, & Psychophysics, 72(1), 168–178. doi: https://link.springer.com/article/10.3758/APP.72.1.168

Gori, S., Giora, E., & Pedersini, R. (2008). Perceptual multistability in figure-ground segregation using motion stimuli. Acta Psychologica, 129(3), 399–409. doi: https://doi.org/10.1016/j.actpsy.2008.09.004

Grossmann, J. K., & Dobbins, A. C. (2006). Competition in bistable vision is attribute-specific. Vision Research, 46(3), 285–292. doi: https://doi.org/10.1016/j.visres.2005.06.002

Hancock, S., & Andrews, T. J. (2007). The role of voluntary and involuntary attention in selecting perceptual dominance during binocular rivalry. Perception, 36(2), 288–298. doi: https://doi.org/10.1068/p5494

Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426. doi: 10.1037/0894-4105.12.3.426

Hsiao, J.-Y., Chen, Y.-C., Spence, C., & Yeh, S.-L. (2012). Assessing the effects of audiovisual semantic congruency on the perception of a bistable figure. Consciousness and Cognition, 21(2), 775–787. doi: https://doi.org/10.1016/j.concog.2012.02.001

Intaitė, M., Koivisto, M., & Castelo-Branco, M. (2014). Event-related potential responses to perceptual reversals are modulated by working memory load. Neuropsychologia, 56, 428–438. doi: https://doi.org/10.1016/j.neuropsychologia.2014.02.016

Intaitė, M., Koivisto, M., Rukšėnas, O., & Revonsuo, A. (2010). Reversal negativity and bistable stimuli: Attention, awareness, or something else? Brain and Cognition, 74(1), 24–34. doi: https://doi.org/10.1016/j.bandc.2010.06.002

Intaitė, M., Noreika, V., Šoliūnas, A., & Falter, C. M. (2013). Interaction of bottom-up and top-down processes in the perception of ambiguous figures. Vision Research, 89, 24–31. doi: https://doi.org/10.1016/j.visres.2013.06.011

Jackson, S., Cummins, F., & Brady, N. (2008). Rapid perceptual switching of a reversible biological figure. PloS one, 3(12), 1–15. doi: https://doi.org/10.1371/journal.pone.0003982

Kanai, R., Carmel, D., Bahrami, B., & Rees, G. (2011). Structural and functional fractionation of right superior parietal cortex in bistable perception. Current Biology, 21(3), R106–R107. doi: https://doi.org/10.1016/j.cub.2010.12.009

Kleinschmidt, A., Büchel, C., Zeki, S., & Frackowiak,R. S. J. (1998). Human brain activity during spontaneously reversing perception of ambiguous figures. Proceedings of the Royal Society of London B: Biological Sciences, 265(1413), 2427–2433. doi: 10.1098/rspb.1998.0594

Kogo, N., Hermans, L., Stuer, D., van Ee, R., & Wagemans, J. (2015). Temporal dynamics of different cases of bi-stable figure–ground perception. Vision Research, 106, 7–19. doi: https://doi.org/10.1016/j.visres.2014.10.029

Kornmeier, J., & Bach, M. (2005). The Necker cube—an ambiguous figure disambiguated in early visual processing. Vision Research, 45(8), 955–960. doi: https://doi.org/10.1016/j.visres.2004.10.006

Kornmeier, J., & Bach, M. (2006). Bistable perception—along the processing chain from ambiguous visual input to a stable percept. International Journal of Psychophysiology, 62(2), 345–349. doi: https://doi.org/10.1016/j.ijpsycho.2006.04.007

Kornmeier, J., Hein, C. M., & Bach, M. (2009). Multistable perception: when bottom-up and top-down coincide. Brain and Cognition, 69(1), 138–147. doi: https://doi.org/10.1016/j.bandc.2008.06.005

Krug, K., Brunskill, E., Scarna, A., Goodwin, G. M., & Parker, A. J. (2008). Perceptual switch rates with ambiguous structure-from-motion figures in bipolar disorder. Proceedings of the Royal Society of London B: Biological Sciences, 275(1645), 1839–1848. doi: 10.1098/rspb.2008.0043

Lalanne, C., & Lorenceau, J. (2004). Crossmodal integration for perception and action. Journal of Physiology-Paris, 98(1-3), 265–279. doi: https://doi.org/10.1016/j.jphysparis.2004.06.001

Laukkonen, R. E., & Tangen, J. M. (2017). Can observing a Necker cube make you more insightful? Consciousness and Cognition, 48, 198–211. doi: https://doi.org/10.1016/j.concog.2016.11.011

Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: changing views in perception. Trends in cognitive sciences, 3(7), 254–264. doi: https://doi.org/10.1016/S1364-6613(99)01332-7

Liu, C.-H., Tzeng, O. J. L., Hung, D. L., Tseng, P., & Juan, C.-H. (2012). Investigation of bistable perception with the “silhouette spinner”: Sit still, spin the dancer with your will. Vision Research,60, 34–39. doi: https://doi.org/10.1016/j.visres.2012.03.005

Long, G. M., & Batterman, J. M. (2012). Dissecting perceptual processes with a new tri-stable reversible figure. Perception, 41(10), 1163–1185. doi: https://doi.org/10.1068/p7313

Long, G. M., & Toppino, T. C. (1981). Multiple representations of the same reversible figure: Implications for cognitive decisional interpretations. Perception, 10(2), 231–234. doi: https://doi.org/10.1068/p100231

Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: alternating views of reversible figures. Psychological bulletin, 130(5), 748. doi: 10.1037/0033-2909.130.5.748

Matsumoto, Y., Takahashi, H., Murai, T., & Takahashi, H. (2015). Visual processing and social cognition in schizophrenia: relationships among eye movements, biological motion perception, and empathy. Neuroscience research, 90, 95–100. doi: https://doi.org/10.1016/j.neures.2014.10.011

McBain, R., Norton, D. J., Kim, J., & Chen, Y. (2011). Reduced cognitive control of a visually bistable image in schizophrenia. Journal of the International Neuropsychological Society, 17 (3), 551–556. doi: https://doi.org/10.1016/j.ijpsycho.2015.02.002

Meenan, J. P., & Miller, L. A. (1994). Perceptual flexibility after frontal or temporal lobectomy. Neuropsychologia, 32(9), 1145–1149. doi: https://doi.org/10.1016/0028-3932(94)90159-7

Megumi, F., Bahrami, B., Kanai, R., & Rees, G. (2015). Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception. NeuroImage, 107 , 190–197. doi: https://doi.org/10.1016/j.neuroimage.2014.12.018

Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4(7), 2–2. doi: 10.1167/4.7.2

Meso, A. I., & Masson, G. S. (2015). Dynamic resolution of ambiguity during tri-stable motion perception. Vision research, 107 , 113–123. doi: https://doi.org/10.1016/j.visres.2014.12.015

Mishra, J., & Hillyard, S. A. (2009). Endogenous attention selection during binocular rivalry at early stages of visual processing. Vision research, 49(10), 1073–1080. doi: https://doi.org/10.1016/j.visres.2008.02.018

Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noiseinduced alternations in an attractor network model of perceptual bistability. Journal of neurophysiology,98(3), 1125–1139. doi: https://doi.org/10.1152/jn.00116.2007

Mudrik, L., Deouell, L. Y., & Lamy, D. (2011). Scene congruency biases binocular rivalry. Consciousness and cognition, 20(3), 756–767. doi: https://doi.org/10.1016/j.concog.2011.01.001

Munar, E., Rosselló, J., Maiche, A., Travieso, D., & Nadal, M. (2008). Manual de neuropsicología. In V. Editores (Ed.), (pp. 59–96). Barcelona. doi: https://dialnet.unirioja.es/servlet/articulo?codigo=3423906

Munhall, K. G., Ten Hove, M. W., Brammer, M., & Paré, M. (2009). Audiovisual integration of speech in a bistable illusion. Current Biology, 19(9), 735–739. doi: 10.1016/j.cub.2009.03.019

Naber, M., Gruenhage, G., & Einhäuser, W. (2010). Tristable stimuli reveal interactions among subsequent percepts: Rivalry is biased by perceptual history. Vision Research, 50(8), 818–828. doi: https://doi.org/10.1016/j.visres.2010.02.004

Ngo, T. T., Liu, G. B., Tilley, A. J., Pettigrew, J. D., & Miller, S. M. (2008). The changing face of perceptual rivalry. Brain Research Bulletin, 75(5), 610–618. doi: https://doi.org/10.1016/j.brainresbull.2007.10.006

Okazaki, M., Kaneko, Y., Yumoto, M., & Arima, K. (2008). Perceptual change in response to a bistable picture increases neuromagnetic beta-band activities. Neuroscience Research, 61(3), 319–328. doi: 10.1016/j.neures.2008.03.010

Piantoni, G., Romeijn, N., Gomez-Herrero, G., Werf, Y. D., & Someren, E. J. W. (2017). Alpha power predicts persistence of bistable perception. Scientific Reports, 7 (1), 5208. doi: 10.1038/s41598-017-05610-8

Pressnitzer, D., & Hupé, J.-M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current biology, 16(13), 1351–1357. doi: https://doi.org/10.1016/j.cub.2006.05.054

Qiu, J., Wei, D., Li, H., Yu, C., Wang, T., & Zhang, Q. (2009). The vase–face illusion seen by the brain: An event-related brain potentials study. International Journal of Psychophysiology, 74(1), 69–73. doi: https://doi.org/10.1016/j.ijpsycho.2009.07.006

Ricci, C., & Blundo, C. (1990). Perception of ambiguous figures after focal brain lesions. Neuropsychologia, 28(11), 1163–1173. doi: https://doi.org/10.1016/0028-3932(90)90052-P

Rock, I., Hall, S., & Davis, J. (1994). Why do ambiguous figures reverse? Acta Psychologica, 87 (1), 33–59. doi: https://www.ncbi.nlm.nih.gov/pubmed/7985524

Sandberg, K., Barnes, G. R., Bahrami, B., Kanai, R., Overgaard, M., & Rees, G. (2014). Distinct MEG correlates of conscious experience, perceptual reversals and stabilization during binocular rivalry. Neuroimage, 100, 161–175. doi: https://doi.org/10.1016/j.neuroimage.2014.06.023

Sandberg, K., Blicher, J. U., Del Pin, S. H., Andersen, L. M., Rees, G., & Kanai, R. (2016). Improved estimates for the role of grey matter volume and GABA in bistable perception. Cortex, 83, 292–305. doi: https://doi.org/10.1016/j.cortex.2016.08.006

Schauer, G., Kanai, R., & Brascamp, J. W. (2016). Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks. Consciousness and cognition, 40, 105–115. doi: https://doi.org/10.1016/j.concog.2016.01.002

Smith, E. L., Grabowecky, M., & Suzuki, S. (2007). Auditory-visual crossmodal integration in perception of face gender. Current Biology, 17 (19), 1680–1685. doi: https://doi.org/10.1016/j.cub.2007.08.043

Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7), 310–318. doi: 10.1016/j.tics.2009.04.006

Sterzer, P., & Rees, G. (2009). Bistable perception and consciousness. Encyclopedia of Consciousness, 93–106. doi: https://doi.org/10.1016/B978-012373873-8.00011-6

Sterzer, P., Russ, M. O., Preibisch, C., & Kleinschmidt, A. (2002). Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage, 15(4), 908–916. doi: https://doi.org/10.1006/nimg.2001.1030

Takase, S., Yukumatsu, S., & Bingushi, K. (2013). Perceptual dominance during binocular rivalry is prolonged by a dynamic surround. Vision research, 92, 33–38. doi: https://doi.org/10.1016/j.visres.2013.09.002

Uhlhaas, P. J., & Silverstein, S. M. (2005). Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychological Bulletin, 131(4), 618. doi: 10.1037/0033-2909.131.4.618

van Dam, L. C. J., & van Ee, R. (2006). The role of saccades in exerting voluntary control in perceptual and binocular rivalry. Vision research, 46(6-7), 787–799. doi: https://doi.org/10.1016/j.visres.2005.10.011

van Loon, A. M., Knapen, T., Scholte, H. S., John-Saaltink, E. S., Donner, T. H., & Lamme, V. A. F. (2013). GABA shapes the dynamics of bistable perception. Current Biology, 23(9), 823–827. doi: https://doi.org/10.1016/j.cub.2013.03.067

Vatakis, A., & Spence, C. (2007). Crossmodal binding: Evaluating the “unity assumption” using audiovisual speech stimuli. Perception & Psychophysics, 69(5), 744–756. doi: https://doi.org/10.3758/BF03193776

Vernet, M., Brem, A.-K., Farzan, F., & Pascual-Leone, A. (2015). Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: a double-coil TMS–EEG study. Cortex, 64, 78–88. doi: https://doi.org/10.1016/j.cortex.2014.09.021

Weilnhammer, V., Ludwig, K., Hesselmann, G., & Sterzer, P. (2013). Frontoparietal cortex mediates perceptual transitions in bistable perception. Journal of Neuroscience, 33(40), 16009–16015. doi: https://doi.org/10.1523/JNEUROSCI.1418-13.2013

Weilnhammer, V., Ludwig, K., Sterzer, P., & Hesselmann, G. (2014). Revisiting the Lissajous figure as a tool to study bistable perception. Vision Research, 98, 107–112. doi: https://doi.org/10.1016/j.visres.2014.03.013

Weilnhammer, V., Stuke, H., Hesselmann, G., Sterzer, P., & Schmack, K. (2017). A predictive coding account of bistable perception-a model-based fMRI study. PLoS Computational Biology, 13(5), e1005536. doi: https://doi.org/10.1371/journal.pcbi.1005536

Xiaogang, W., Na, S., Lei, H., Yong, Z., Taiyong, B., & Jiang, Q. (2017). Category selectivity of human visual cortex in perception of rubin face–vase illusion. Frontiers in Psychology. doi: https://doi.org/10.3389/fpsyg.2017.01543

Yamamoto, S., & Yamamoto, M. (2006). Effects of the gravitational vertical on the visual perception of reversible figures. Neuroscience Research, 55(2), 218–221. doi: https://doi.org/10.1016/j.neures.2006.02.014

Yeh, S.-L., Hsiao, J.-Y., Chen, Y.-C., & Spence, C. (2011). Interplay of multisensory processing, attention, and consciousness as revealed by bistable figures. i-Perception, 2(8), 910–910. doi: https://doi.org/10.1068/ic910

Downloads

Download data is not yet available.

Cited by

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
9%
33%
Days to publication 
210
145
Editor & editorial board
profiles
Publisher 
Universidad San Buenaventura - USB (Colombia)