Dimensions

PlumX

Cómo citar
Oh, S., Kim, A., Kang, E., & Choi, S. (2020). Red cerebral funcional en estado de reposo y la formación de lazos sociales en ancianos. International Journal of Psychological Research, 13(2), 59–67. https://doi.org/10.21500/20112084.4422
Términos de licencia
The work that is sent to this journal must be original, not published or sent to be published elsewhere; and if it is accepted for publication, authors will agree to transfer copyright to International Journal of Psychological Research. 

To give up copyright, the authors allow that, International Journal of Psychological Research, distribute the work more broadly, check for the reuse by others and take care of the necessary procedures for the registration and administration of copyright; at the same time, our editorial board represents the interests of the author and allows authors to re-use his work in various forms. In response to the above, authors transfer copyright to the journal, International Journal of Psychological Research. This transfer does not imply other rights which are not those of authorship (for example those that concern about patents). Likewise, preserves the authors rights to use the work integral or partially in lectures, books and courses, as well as make copies for educational purposes. Finally, the authors may use freely the tables and figures in its future work, wherever make explicit reference to the previous publication in International Journal of Psychological Research. The assignment of copyright includes both virtual rights and forms of the article to allow the editorial to disseminate the work in the manner which it deems appropriate. 

The editorial board reserves the right of amendments deemed necessary in the application of the rules of publication.

Resumen

Antecedentes: El propósito de este estudio fue determinar la relevancia de la relación entre la red cerebral y el manejo de los lazos sociales. Método: los participantes son 52 adultos mayores coreanos de 65 años o más que viven en Ganghwa-gun, Incheon. Utilizamos un índice de tríada cerrada (CTI), que es la unidad de análisis más básica en el estudio de los fenómenos grupales. Este índice es una variable de red social que ha demostrado tener una implicación diferente dependiendo de la condición y el rol del sujeto. Después de realizar dos encuestas por cuestionario a intervalos de tres años, los participantes se clasificaron en un grupo aumentado y un grupo disminuido de acuerdo con el cambio de CTI. Se siguió el análisis de fMRI en estado de reposo para investigar la diferencia de las redes cerebrales entre los grupos.Resultados: Según el análisis del estudio, todos los participantes que habían aumentado en número de CTI tienen una mayor eficiencia local que el grupo de participantes que no tuvieron ningún efecto o disminuyeron en CTI. Conclusiones: Nuestro estudio sugiere que la relación social que está sustancialmente relacionada con la red cerebral es un factor importante en el envejecimiento exitoso. Por último, dado que existe una restricción de que el estudio no puede explicar el aspecto causal de la red cerebral y la relación tríada, existe la necesidad de una mayor investigación.

Palabras clave:

Citas

Bae, K. H., & Kim, Y. H. (2006). The study on the relationship between social capital and organizational commitment: Focusing on burt’s structural holes. Korean Journal of Public Administration, 44 (3), 1–32.
Barrera, M., Sandler, I. N., & Ramsay, T. B. (1981). Preliminary development of a scale of social support: Studies on college students. American Journal of Community Psychology, 9 (4), 435–447. https://doi.org/10.1007/BF00918174.
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral cortex, 10 (3), 295–307. https://doi.org/10.1093/cercor/10.3.295.
Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of aging research, 2013, 657508. https://doi.org/10.1155/2013/657508.
Brothers, L. (2001). Friday’s footprint: How society shapes the human mind. Oxford University Press.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neuroscience, 10 (3), 186–198. https://doi.org/10.1038/nrn2575.
Burt, R. S. (1992). Structural hole. Harvard Business School Press.
Cornwell, B., Laumann, E. O., & Schumm, L. P. (2008). The social connectedness of older adults: A national profile. American sociological review, 73 (2), 185–203. https://doi.org/10.1177%2F000312240807300201.
Cornwell, &Waite, L. J. (2009). Social disconnectedness, perceived isolation, and health among older adults. Journal of health and social behavior, 50 (1), 31–48. https://dx.doi.org/10.1177/2F002214650905000103.
Costenbaderm, E., & Valente, T. W. (2003). The stability of centrality measures when networks are sampled. Social networks, 25 (4), 283–307.
Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain research, 1079 (1), 4–14. https://doi.org/10.1016/j.brainres.2005.12.115.
de Vico Fallani, F., Richiardi, J., Chavez, M., & Achard, S. (2014). Graph analysis of functional brain networks: Practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 369 (1653), 20130521. https://dx.doi.org/10.1098/2Frstb.2013.0521.
Dugan, E., & Kivett, V. R. (1994). The importance of emotional and social isolation to loneliness among very old rural adults. The Gerontologist, 34 (3), 340–346. https://doi.org/10.1093/geront/34.3.340.
Dunkle, R. E., Roberts, B., & Haug, M. R. (2001). The oldest old in everyday life: Self perception, coping with change, and stress. Springer Publishing Company.
Fiori, K. L., Antonucci, T. C., & Cortina, K. S. (2006). Social network typologies and mental health among older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 61 (1), P25–P32. https://doi.org/10.1093/geronb/61.1.p25.
Fratiglioni, L., Wang, H. X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: A communitybased longitudinal study. The lancet, 355 (9212), 1315–1319. https://doi.org/10.1016/s0140-6736(00)02113-9.
Frith, U., & Frith, C. (2001). The biological basis of social interaction. Current Directions in Psychological Science, 10 (5), 151–155. https://doi.org/ 10.1111/1467-8721.00137.
Gargiulo, M., & Benassi, M. (2000). Trapped in your own net? network cohesion, structural holes, and the adaptation of social capital. Organization science, 11 (2), 183–196. https://doi.org/10.1287/orsc.11.2.183.12514.
Green, M. F., & Horan, W. P. (2010). Social cognition in schizophrenia. Current Directions in Psychological Science, 19 (4), 243–248. https://doi.org/10.1177%2F0963721410377600.
Holtzman, R. E., Rebok, G. W., Saczynski, J. S., Kouzis, A. C., WilcoxDoyle, K., & Eaton, W. W. (2004). Social network characteristics and cognition in middle-aged and older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 59 (6), P278–P284. https://doi.org/10.1177%2F0963721410377600.
Huang, H., Tang, J., Wu, S., & Liu, L. (2014, April). Mining triadic closure patterns in social networks. In Proceedings of the 23rd International Conference on World Wide Web(pp. 499-504). ACM.
Hynes, C. A., Baird, A. A., & Grafton, S. T. (2006). Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking. Neuropsychologia, 44 (3), 374–383. https://doi.org/10.1016/j.neuropsychologia.2005.06.011.
Kennedy, D. P., Redcay, E., & Courchesne, E. (2006). Failing to deactivate: Resting functional abnormalities in autism. Proceedings of the National Academy of Sciences, 103 (21), 8275–8280. https://doi.org/10.1073/pnas.0600674103.
Kim, H. Y., & Choi, J. Y. (2016). Aging and efficiency of brain functional networks : Preliminary study in korean women. Korean Journal of Cognitive and Biological Psychology, 28 (4), 675–682.
Kwak, S., Joo, W., Youm, Y., & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society B: Biological Sciences, 285 (1871), 20172708. https://doi.org/10.1098/rspb.2017.2708.
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87 (19), 198701. https://doi.org/10.1103/PhysRevLett.87.198701.
Latora, V., & Marchiori, M. (2003). Economic smallworld behavior in weighted networks. The European Physical Journal B-Condensed Matter and Complex Systems, 32 (2), 249–263. https://doi.org/10.1140/epjb/e2003-00095-5.
Lewis, J. D., Evans, A. C., Pruett, J. R., Botteron, K., Zwaigenbaum, L., Estes, A., Gerig, G., Collins, L., Kostopoulos, P., McKinstry, R., Dager, S., Paterson, S., Schultz, R. T., Styner, M., & Hazlett, S., H.and Dager. (2014). Network inefficiencies in autism spectrum disorder at 24 months. Translational psychiatry, 4 (5), e388–e388. https://dx.doi.org/10.1038%2Ftp.2014.24.
Liu, Y., & et al. (2008). Disrupted small-world networks in schizophrenia. Brain, 131 (4), 945–961. https://doi.org/10.1093/brain/awn018.
Petrella, J. R. (2011). Use of graph theory to evaluate brain networks: A clinical tool for a small world? Reviews and Commentary, 259 (2), 317–320. https://doi.org/10.1148/radiol.11110380.
Pinkham, A. E., Hopfinger, J. B., Pelphrey, K. A., Piven, J., & Penn, D. L. (2008). Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophrenia research, 99 (1), 164–175. https://doi.org/10.1016/j.schres.2007.10.024.
Prince, M. J., Harwood, R. H., Blizard, R. A., Thomas, A., & Mann, A. H. (1997). Social support deficits, loneliness and life events as risk factors for depression in old age. the gospel oak project vi. Psychological medicine, 27 (02), 323–332. https://doi.org/10.1017/s0033291796004485.
Rolland, Y., van Kan, G. A., & Vellas, B. (2010). Healthy brain aging: Role of exercise and physical activity. Clinics in geriatric medicine, 26 (1), 75–87. https://doi.org/10.1016/j.cger.2009.11.002.
Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., Villringer, K., Kurth, R., & Villringer, A. (2001). Somatotopic organization of human secondary somatosensory cortex. Cerebral Cortex, 11 (5), 463–473. https://doi.org/10.1093/cercor/11.5.463.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52 (3), 1059–1069.
Rudie, J. D., & et al. (2013). Altered functional and structural brain network organization in autism. NeuroImage: clinical, 2, 79–94. https://doi.org/10.1016/j.nicl.2012.11.006.
Sabbagh, M. A. (2004). Understanding orbitofrontal contributions to theory-of-mind reasoning: Implications for autism. Brain and cognition, 55 (1), 209–219. https://doi.org/10.1016/j.bandc.2003.04.002.
Sala-Llonch, R., & et al. (2014). Changes in whole-brain functional networks and memory performance in aging. Neurobiology of aging, 35 (10), 2193–2202. https://doi.org/10.1016/j.neurobiolaging.2014.04.007.
Scheff, S. W., Price, D. A., Schmitt, F. A., Scheff, M. A., & Mufson, E. J. (2011). Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and alzheimer’s disease. Journal of Alzheimer’s Disease, 24 (3), 547–557. https://doi.org/10.3233/jad-2011-101782.
Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fmri functional connectivity. European Neuropsychopharmacology, 20 (8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008.
Van Tilburg, T. (1998). Losing and gaining in old age: Changes in personal network size and social support in a four-year longitudinal study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 53 (6), S313–S323. https://doi.org/10.1093/geronb/53b.6.s313.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393 (6684), 440–442. https://doi.org/10.1038/30918.
Welchew, D. E., & et al. (2005). Functional disconnectivity of the medial temporal lobe in aspergers syndrome. Biological psychiatry, 57 (9), 991– 998. https://doi.org/10.1016/j.biopsych.2005.01.028.
Winningham, R. G., & Pike, N. L. (2007). A cognitive intervention to enhance institutionalized older adults social support networks and decrease loneliness. Aging & mental health, 11 (6), 716–721. https://doi.org/10.1080/1360786070136622.
Ybarra, O., Burnstein, E., Winkielman, P., Keller, M. C., Manis, M., Chan, E., & Rodriguez, J. (2008). Mental exercising through simple socializing: Social interaction promotes general cognitive functioning. Personality and Social Psychology Bulletin, 34 (2), 248–259. https://doi.org/10.1177/0146167207310454.
Youm, Y., Laumann, E. O., Ferraro, K. F., Waite, L. J., Kim, H. C., Park, Y., Chu, S. H., Joo, W., & Lee, J. A. (2014). Social network properties and self-rated health in later life: Comparisons from the korean social life, health, and aging project and the national social life, health and aging project. BMC geriatrics, 14, 1–15. https://doi.org/10.1186/1471-2318-14-102.
Zunzunegui, M. V., Alvarado, B. E., Del Ser, T., & Otero, A. (2003). Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 2, S93–S100.

Descargas

Los datos de descargas todavía no están disponibles.

Citado por