To give up copyright, the authors allow that, International Journal of Psychological Research, distribute the work more broadly, check for the reuse by others and take care of the necessary procedures for the registration and administration of copyright; at the same time, our editorial board represents the interests of the author and allows authors to re-use his work in various forms. In response to the above, authors transfer copyright to the journal, International Journal of Psychological Research. This transfer does not imply other rights which are not those of authorship (for example those that concern about patents). Likewise, preserves the authors rights to use the work integral or partially in lectures, books and courses, as well as make copies for educational purposes. Finally, the authors may use freely the tables and figures in its future work, wherever make explicit reference to the previous publication in International Journal of Psychological Research. The assignment of copyright includes both virtual rights and forms of the article to allow the editorial to disseminate the work in the manner which it deems appropriate.
The editorial board reserves the right of amendments deemed necessary in the application of the rules of publication.
Resumen
Hoy en día, el consumo de alcohol frecuentemente acompaña la socialización como una actividad rutinaria en varios grupos de la sociedad. El 84.0% de las personas mayores de 18 años en los Estados Unidos han consumido alcohol en algún momento de sus vidas (National Institute on Alcohol Abuse & US, 2023). De manera similar, el 81.7% de los noruegos en el grupo de edad de 16 a 79 años consumieron alcohol en 2021 (Bye, 2018). Conducir después del consumo de alcohol es un problema mundial que causa un gran número de muertes y lesiones cada año. Este trabajo propone los primeros pasos hacia el desarrollo de un detector de alcohol basado en electroencefalografía (EEG), concebido con la idea de prevenir que las personas conduzcan bajo los efectos del alcohol. Esto incluye el diseño de un protocolo experimental para la recopilación de datos EEG, durante el cual los participantes realizaron la prueba de Flanker y se midió su concentración de alcohol en la sangre (BAC). El conjunto de datos resultante consta de dos sesiones por participante, tanto mientras estaban afectados como no afectados por el alcohol. El análisis estadístico de la prueba de Flanker indicó que los participantes estaban afectados por el alcohol y, por lo tanto, se esperaba que sus señales EEG también lo estuvieran. Las señales EEG recopiladas se utilizaron como entrada para modelos intra-participantes e inter-participantes, ambos basados en la arquitectura EEGNet. El modelo intra-participantes obtuvo una precisión media de clasificación del 90.7%, y el modelo inter-participantes una precisión media del 62.9%. Los resultados sugieren que el alcohol puede detectarse con alta precisión al desarrollar modelos individuales y con una precisión superior al azar al usar un modelo general. Por lo tanto, el trabajo presentado aquí podría servir como los primeros pasos hacia el desarrollo de un detector de alcohol basado en EEG para conductores.
Palabras clave:
Referencias
Bye, E. K. (2018). Alkoholbruk i den voksne befolkningen. Norwegian Institute of Public Health, Webpublication, 9.
Celaya-Padilla, J. M., Romero-González, J. S., Galvan-Tejada, C. E., Galvan-Tejada, J. I., Luna-Garc\’\ia, H., Arceo-Olague, J. G., Gamboa-Rosales, N. K., Sifuentes-Gallardo, C., Martinez-Torteya, A., la Rosa, J. I., & Gamboa-Rosales, H. (2021). In-vehicle alcohol detection using low-cost sensors and genetic algorithms to aid in the drinking and driving detection. Sensors, 21(22), 7752. https://doi.org/10.3390/s21227752
Cohen, H. L., Porjesz, B., & Begleiter, H. (1993). Ethanol-induced alterations in electroencephalographic activity in adult males. Neuropsychopharmacology, 8(4), 365–370. https://doi.org/10.1038/npp.1993.36
Ehlers, C. L., Wall, T. L., & Schuckit, M. A. (1989). EEG spectral characteristics following ethanol administration in young men. Electroencephalography and Clinical Neurophysiology, 73(3), 179–187. https://doi.org/10.1016/0013-4694(89)90118-1
Ek, Z., Akg, A., & Bozkurt, M. R. (2013). The classification of EEG signals recorded in drunk and non-drunk people. International Journal of Computer Applications, 68(10). https://doi.org/10.5120/11619-7018
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267
Farsi, L., Siuly, S., Kabir, E., & Wang, H. (2020). Classification of alcoholic EEG signals using a deep learning method. IEEE Sensors Journal, 21(3), 3552–3560.
Hu, L., & Zhang, Z. (2019). EEG signal processing and feature extraction. EEG Signal Processing and Feature Extraction, 1–437. https://doi.org/10.1007/978-981-13-9113-2/COVER
Jones, A. W. (2008). Biochemical and physiological research on the disposition and fate of ethanol in the body. In Medicolegal Aspects of Alcohol (5th Edition, pp. 47–128), Lawyers and Judges Publishing Company.
Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 15(5), 56013. https://doi.org/10.1088/1741-2552/aace8c
Mukhtar, H., Qaisar, S. M., & Zaguia, A. (2021). Deep convolutional neural network regularization for alcoholism detection using EEG signals. Sensors, 21(16), 5456. https://doi.org/10.3390/s21165456
Murata, K., Fujita, E., Kojima, S., Maeda, S., Ogura, Y., Kamei, T., Tsuji, T., Kaneko, S., Yoshizumi, M., & Suzuki, N. (2010). Noninvasive biological sensor system for detection of drunk driving. IEEE Transactions on Information Technology in Biomedicine, 15(1), 19–25. https://doi.org/10.1109/titb.2010.2091646
National Institute on Alcohol Abuse, & US, A. (2023). Alcohol Use in the United States: Age Groups and Demographic Characteristics. NIH. http://surl.li/plfnjr
Nordstrøm-Hauge, I. J. (2022). Design of protocol and collection of data for an EEG based alcohol detector. https://doi.org/10.13140/RG.2.2.36378.11205
Nordstrøm-Hauge, I. J., & Vassbotn, M. (2023). EEG-Based Alcohol Detection System with AI Techniques: Towards the Design of BCI Systems for Driver Monitoring. Norwegian University of Science and Technology.
Singhal, V., Mathew, J., Behera, R. K., & others. (2021). Detection of alcoholism using EEG signals and a CNN-LSTM-ATTN network. Computers in Biology and Medicine, 138, 104940. https://doi.org/10.1016/j.compbiomed.2021.104940
Steele, C. M., & Josephs, R. A. (1990). Alcohol myopia: Its prized and dangerous effects. American Psychologist, 45(8), 921.
Stenberg, G., Sano, M., Rosén, I., & Ingvar, D. H. (1994). EEG topography of acute ethanol effects in resting and activated normals. Journal of Studies on Alcohol, 55(6), 645–656. https://doi.org/10.15288/jsa.1994.55.645
Vassbotn, M. (2022). Design of protocol and collection of data for an EEG based alcohol detector. https://doi.org/10.13140/RG.2.2.15013.37600
Vijayan, V., & Sherly, E. (2019). Real time detection system of driver drowsiness based on representation learning using deep neural networks. Journal of Intelligent & Fuzzy Systems, 36(3), 1977–1985. https://doi.org/10.3233/JIFS-169909
Vissers, L., Houwing, S., & Wegman, F. (2018). Alcohol-related road casualties in official crash statistics. International Transport Forum. https://www.itf-oecd.org/sites/default/files/docs/alcohol-related-road-casualties-official-crash-statistics.pdf
World Health Organization. (n.d.). Legal blood alcohol concentration (BAC) limits. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/legal-blood-alcohol-concentration-(bac)-limits