View/Download
How to Cite
Londoño Ciro, L. A., Cañón Barriga, J. E., Villada Flórez, R. D., & López Ceballos, L. Y. (2015). Spatial characterization of pm10 in Medellín Colombia by geostatistical models. Ingenierías USBmed, 6(2), 26–35. https://doi.org/10.21500/20275846.1728
More Citation Formats
License terms
▼
This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.
Therefore, the journal invokes the Creative Commons 4.0
License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.
Abstract
In this article a geostatistical model is presented in order to spatially characterize the PM10 pollutant behavior in the city of Medellin, Colombia. The data has been taken from nine monitoring locations in monthly average value (µg/m3) for the period from January 2003 to December 2007. Different models were evaluated by cross-validation tests. The best model is a j-bessel. The model parameters are calculated using ANOVA tests for quarterly groupings. Maps of the pollutant’s spatial characterization are obtained with ordinary Kriging and GIS.
References
[1]. N. Hamm, A. Finley, M. Schaap and A. Stein, “A spatially varying coefficient model for mapping PM10 air quality at the European scale,” Atmospheric Environment, Vol. 102, pp. 393-405, 2015.
[2]. Z. Sun, X. An, Y. Tao and Q. Hou, “Assessment of population exposure to PM10 for respiratory disease in Lanzhou (China) and its health-related economic costs based on GIS,” BMC Public Health, Vol. 13, No 1, pp. 891-900, 2013.
[3]. J. Li and D. Heap, “A. Spatial interpolation methods applied in the environmental sciences: A review,” Environmental Modelling & Software, Vol. 53, pp. 173-189, 2014.
[4]. S. Young, J. Tullis and J. Cothren, “A remote sensing and GIS-assisted landscape epidemiology approach to West Nile virus,” Applied Geography, No 45, pp. 241-249, 2013.
[5]. M. J. Bechle, D. B. Millet and J. D. Marshall, “Remote sensing of exposure to NO2: satellite versus ground based measurement in a large urban area,” Atmospheric Environment, Vol. 69, pp. 345-353, 2013.
[6]. J. Lorenzo, G. Aviles, J. Mondejar and M. Vargas, “A spatio-temporal geostatistical approach to predicting pollution levels: The case of mono-nitrogen oxides in Madrid,” Computers, Environment and Urban Systems, No 37, pp. 95-106, 2013.
[7]. M. Rooney, R. Arku, K. Dionisio, C. Paciorek, A. Friedman, H. Carmichael, Z. Zhou, A. Hughes, J. Vallarino, S. Agyei-Mensah, J. Spengler and M. Ezzati, “Spatial and temporal patterns of particulate matter sources and pollution in four communities in Accra, Ghana,” Science of the Total Environment, Vol. 435-436, pp 107-114, 2012.
[8]. D. Rojas-Avellaneda, “Spatial interpolation techniques for estimating levels of pollutant concentrations in the atmosphere,” Rev. mex. is, Vol.53, No.6, pp.447-454, 2007.
[9]. H. Merbitz, S. Fritz and C. Schneider, “Mobile measurements and regression modeling of the spatial particulate matter variability in an urban area,” Sci. Total Environ, Vol. 438, pp. 389-403, 2012.
[10]. G. Hoek, K. Meliefste, J. Cyrys, M. Lewné, T. Bellander, M. Brauer and B. Brunekreef, “Spatial variability of fine particle concentrations in three European areas,” Atmospheric Environment, Vol. 36, No 25, pp. 4077-4088, 2002.
[11]. G. Righini, A. Cappelletti, C. Cremona, A. Piersanti, L. Vitali and L. Ciancarella, “GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data,” Atmospheric Environment, No 97, pp. 121-129, 2014.
[12]. D. Dominick, H. Juahir, M. Latif, S. Zain and A. Aris, “Spatial assessment of air quality patterns in Malaysia using multivariate analysis,” Atmospheric Environment, No 60, pp. 172-181, 2012.
[13]. E. Gramsch, F. Cereceda-Balic, P Oyola and D. Von Baer, “Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone data,” Atmospheric Environment, Vol. 40, No 28, pp. 5464-5475, 2006.
[14]. C. Silva, L. Firinguetti, and A. Trier, “Contaminación ambiental por partículas en suspensión: Modelamiento estadístico,” Actas XXI Jornadas Nacionales de Estadística. Concepción, Chile, 1994.
[15]. P. Pérez and J. Reyes, “Prediction of maximun of 24h average of PM10 concentrations 30h in advance in Santiago, Chile,” Atmospheric Environment, Vol. 36, pp. 4555-4561, 2002.
[16]. C. Silva, P. Pérez and A. Trier, “Statistical modelling and prediction of atmospheric pollution by particulate materia: two nonparametric approaches,” Environmetrics, Vol. 12, pp. 147-159, 2001.
[17]. J. Huertas, M. Huertas, S. Izquierdo and E. Gonzales, “Air quality impact assessment of multiple open pit coal mines in northern Colombia,” Journal of Environmental Management, Vol. 93, No 1, pp. 121-129, 2012.
[18]. E. Dons, M. Van Poppe, L. Panis, S. De Prins, P. Berghmans, G. Koppen and C. Matheeussen, “Land use regression models as a tool for short, medium and long term exposure to traffic related air pollution,” Science of the total Environment, Vol. 476–477, pp. 378-386, 2014.
[19]. M. Beauchamp, L. Malherbe and C. De Fouquet, “A pragmatic approach to estimate the number of days in exceedance of PM10 limit value,” Atmospheric Environment, Vol. 111, pp. Pages 79-93, 2015.
[20].R. Webster and M. Oliver, Geostatistics for Environmental Scientists. England: John Wiley & Sons Ltd, 2007, p. 19-20.
[21]. R. Bilonik, “A. Risk qualified maps of hydrogen ion concentration for the New York state area for 1966 – 1978,” Atmospheric Environment, Vol. 17, pp. 2513-2524, 1983.
[22]. L. Londoño and J. Cañón, “Imputation of spatial air quality data using gis-spline and the index of agreement in sparse urban monitoring networks,” Revista Facultad de Ingeniería Universidad de Antioquia, No. 76, to be published, 2015.
[23]. A. Pollice, and G. Jona Lasinio, “Two Approaches to Imputation and Adjustment of Air Quality Data from a Composite Monitoring Network,” Journal of Data Science, Vol. 7, pp. 43-59, 2009.
[24]. M. Quiroz, D. Martínez, H. Massone, L. Londoño and C. Dapeña, “Spatial distribution of electrical conductivity and stable isotopes in groundwater in large catchments: a geostatistical approach in the Quequén Grande River catchment, Argentina,” Isotopes in Environmental and Health Studies, Jul. 2015. [Online]. Available: http://dx.doi.org/10.1080/10256016.2015.1056740.
[25]. I. Villada and L. Londoño, “Aplicación de métodos geoestadísticos para la caracterización de la calidad química de un depósito de material calcáreo,” Revista Boletín Ciencias de la Tierra, No. 35, pp. 15-23, 2014.
[26]. K. Johnston, J. Verhoef, K. Krivoruchko and N. Lucas, ArcGIS Geostatistical Analyst Tutorial. USA: ESRI, 2003, pp. 256-258.
[2]. Z. Sun, X. An, Y. Tao and Q. Hou, “Assessment of population exposure to PM10 for respiratory disease in Lanzhou (China) and its health-related economic costs based on GIS,” BMC Public Health, Vol. 13, No 1, pp. 891-900, 2013.
[3]. J. Li and D. Heap, “A. Spatial interpolation methods applied in the environmental sciences: A review,” Environmental Modelling & Software, Vol. 53, pp. 173-189, 2014.
[4]. S. Young, J. Tullis and J. Cothren, “A remote sensing and GIS-assisted landscape epidemiology approach to West Nile virus,” Applied Geography, No 45, pp. 241-249, 2013.
[5]. M. J. Bechle, D. B. Millet and J. D. Marshall, “Remote sensing of exposure to NO2: satellite versus ground based measurement in a large urban area,” Atmospheric Environment, Vol. 69, pp. 345-353, 2013.
[6]. J. Lorenzo, G. Aviles, J. Mondejar and M. Vargas, “A spatio-temporal geostatistical approach to predicting pollution levels: The case of mono-nitrogen oxides in Madrid,” Computers, Environment and Urban Systems, No 37, pp. 95-106, 2013.
[7]. M. Rooney, R. Arku, K. Dionisio, C. Paciorek, A. Friedman, H. Carmichael, Z. Zhou, A. Hughes, J. Vallarino, S. Agyei-Mensah, J. Spengler and M. Ezzati, “Spatial and temporal patterns of particulate matter sources and pollution in four communities in Accra, Ghana,” Science of the Total Environment, Vol. 435-436, pp 107-114, 2012.
[8]. D. Rojas-Avellaneda, “Spatial interpolation techniques for estimating levels of pollutant concentrations in the atmosphere,” Rev. mex. is, Vol.53, No.6, pp.447-454, 2007.
[9]. H. Merbitz, S. Fritz and C. Schneider, “Mobile measurements and regression modeling of the spatial particulate matter variability in an urban area,” Sci. Total Environ, Vol. 438, pp. 389-403, 2012.
[10]. G. Hoek, K. Meliefste, J. Cyrys, M. Lewné, T. Bellander, M. Brauer and B. Brunekreef, “Spatial variability of fine particle concentrations in three European areas,” Atmospheric Environment, Vol. 36, No 25, pp. 4077-4088, 2002.
[11]. G. Righini, A. Cappelletti, C. Cremona, A. Piersanti, L. Vitali and L. Ciancarella, “GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data,” Atmospheric Environment, No 97, pp. 121-129, 2014.
[12]. D. Dominick, H. Juahir, M. Latif, S. Zain and A. Aris, “Spatial assessment of air quality patterns in Malaysia using multivariate analysis,” Atmospheric Environment, No 60, pp. 172-181, 2012.
[13]. E. Gramsch, F. Cereceda-Balic, P Oyola and D. Von Baer, “Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone data,” Atmospheric Environment, Vol. 40, No 28, pp. 5464-5475, 2006.
[14]. C. Silva, L. Firinguetti, and A. Trier, “Contaminación ambiental por partículas en suspensión: Modelamiento estadístico,” Actas XXI Jornadas Nacionales de Estadística. Concepción, Chile, 1994.
[15]. P. Pérez and J. Reyes, “Prediction of maximun of 24h average of PM10 concentrations 30h in advance in Santiago, Chile,” Atmospheric Environment, Vol. 36, pp. 4555-4561, 2002.
[16]. C. Silva, P. Pérez and A. Trier, “Statistical modelling and prediction of atmospheric pollution by particulate materia: two nonparametric approaches,” Environmetrics, Vol. 12, pp. 147-159, 2001.
[17]. J. Huertas, M. Huertas, S. Izquierdo and E. Gonzales, “Air quality impact assessment of multiple open pit coal mines in northern Colombia,” Journal of Environmental Management, Vol. 93, No 1, pp. 121-129, 2012.
[18]. E. Dons, M. Van Poppe, L. Panis, S. De Prins, P. Berghmans, G. Koppen and C. Matheeussen, “Land use regression models as a tool for short, medium and long term exposure to traffic related air pollution,” Science of the total Environment, Vol. 476–477, pp. 378-386, 2014.
[19]. M. Beauchamp, L. Malherbe and C. De Fouquet, “A pragmatic approach to estimate the number of days in exceedance of PM10 limit value,” Atmospheric Environment, Vol. 111, pp. Pages 79-93, 2015.
[20].R. Webster and M. Oliver, Geostatistics for Environmental Scientists. England: John Wiley & Sons Ltd, 2007, p. 19-20.
[21]. R. Bilonik, “A. Risk qualified maps of hydrogen ion concentration for the New York state area for 1966 – 1978,” Atmospheric Environment, Vol. 17, pp. 2513-2524, 1983.
[22]. L. Londoño and J. Cañón, “Imputation of spatial air quality data using gis-spline and the index of agreement in sparse urban monitoring networks,” Revista Facultad de Ingeniería Universidad de Antioquia, No. 76, to be published, 2015.
[23]. A. Pollice, and G. Jona Lasinio, “Two Approaches to Imputation and Adjustment of Air Quality Data from a Composite Monitoring Network,” Journal of Data Science, Vol. 7, pp. 43-59, 2009.
[24]. M. Quiroz, D. Martínez, H. Massone, L. Londoño and C. Dapeña, “Spatial distribution of electrical conductivity and stable isotopes in groundwater in large catchments: a geostatistical approach in the Quequén Grande River catchment, Argentina,” Isotopes in Environmental and Health Studies, Jul. 2015. [Online]. Available: http://dx.doi.org/10.1080/10256016.2015.1056740.
[25]. I. Villada and L. Londoño, “Aplicación de métodos geoestadísticos para la caracterización de la calidad química de un depósito de material calcáreo,” Revista Boletín Ciencias de la Tierra, No. 35, pp. 15-23, 2014.
[26]. K. Johnston, J. Verhoef, K. Krivoruchko and N. Lucas, ArcGIS Geostatistical Analyst Tutorial. USA: ESRI, 2003, pp. 256-258.
Downloads
Download data is not yet available.