Ingenierías USBMed
Dimensions

PlumX

How to Cite
Jaramillo F., M. C., Zapata O., L. F., & Marulanda L., T. (2015). Phytoremediation by elodea sp. Ingenierías USBmed, 6(2), 42–45. https://doi.org/10.21500/20275846.1730
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

Mercury is a contaminant from mining, which is highly toxic to plants, animals and humans. Mercury is bioaccumulated in plants and fish of human consumption. This research evaluated bioremediation capacity of mercury ion by the aquatic macrophyte Elodea sp. Stems of 35-36 cm of plants has been evaluated at different concentrations of HgCl2 solution. The evaluated concentrations were 0,39mg/ml, 1,55mg/ml and of 6,25mg/ml, although the Elodea sp plant showed high performance in the three solutions, but the plant showed 100% of removing of mercury at 1,55mg/ml concentration, therefore this concentration was become in suitable conditions for removing mercury.

References

[1] A. Ullah; S. Heng; M. F. Hussain Munis; S. Fahad and X. Yang. “Phytoremediation of heavy metals assisted by plant growth promoting bacteria: a review”. Environmental and Experimental Botany, Vol. 117, pp. 28-40, 2015.
[2] Ambientum, “El mercurio como elemento contaminante,” Ambientum, 2001. [En línea]. Available: http://www.ambientum.com/revista/2001_18/2001_18_ATMOSFERA/LMRCRCML2.htm. [Último acceso: 09 06 2015].
[3] P. Miretzky; A. Saralegui and A. Fernández Cirelli. “Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina)”. Chemosphere, Vol. 57, pp. 997-1005, 2004.
[4] J. V. Vidal Durango. “Remediación de suelos contaminados con mercurio utilizando guarumo,2 Revista Científica Ingeniería y Desarrollo, nº 27, p. 1, 2010.
[5] J. M. Negrete; J. D. Hernandez, J. P. Hernandez y S. D. Jesus Olivero Verbel, “Phytoremediation of mercury- Contaminated soils by Jatropha curcas,” Chemosphere , vol. 127, pp. 58-63, 2015.
[6] X. G. Martinez, , Universidad Autonoma de Bracelona, “El mercurio como contaminante global,” 08 2004. [En línea]. Available: http://www.tdx.cat/bitstream/handle/10803/3174/xgm1de1.pdf;jsessionid=0B7BA87966545FD4DCC931DE91DB08E5.tdx1?sequence=1. [Último acceso: 11 06 2015].
[7] Arreghini, S. “Plantas acuàticas (macrofitas),” [En línea]. Available: http://www.cricyt.edu.ar/enciclopedia/terminos/PlantAcuat.htm. [Último acceso: 09 06 2015].
[8] Red Naturaleza, “El portal de la naturaleza,” Red de Naturaleza., [En línea]. Available: http://www.rednaturaleza.com/peces/plantas-de-acuario-elodea-densa. [Último acceso: 09 06 2015].
[9] V. C. Pandey; D. N. Pandey and N. Singh. «Sustainable phytoremediation based on naturally colonizing and economically valuable plants,» Journal of cleaner Production, Vol. 86, pp. 37-39, 2015.
[10] V. K. Mishra, B. D. Tripathi and K.-H. Kim, «Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent,» Journal of Hazardous Materials., vol. 172, pp. 749-754, 2009.
[11] H. Ali; E. Khanand M. A. Sajad. «Phytoremediation of heavy metals-Concepts and applications». Chemosphere, Vol. 91, pp. 869-881, 2013
[12] M. A. Kahkonen; M. Pantsar-Kallio and P. K. G. Manninen, «Analysing heavy metal concentrations in the different parts of Elodea Canadensis and surface sediment with pca in two boreal lakes in Southem Finland,» Chemosphere, Vol. 35, pp. 2645-2656, 1997.
[13] M. A. Kankonen and P. K. G. Manninen. «The uptake of nickel and chromium from water by elodea canadensis at different nickel and chromium exposure levels,» Chemosphere, Vol. 36, pp. 1381-1390, 1998.
[14] A. Fritioff, and M. Greger. «Fate of cadmium in Elodea Canadensis,» Chemosphere, Vol. 67, pp. 365-375, 2007.
[15] R. Olette; M. Couderchet ; S. Biagianti and P. Eullaffroy. «Toxicity and removal of pesticides by selected arquatic plants,» Chemosphere, Vol. 70, pp. 1414-1421, 2008.
[16] E. B. McGregor ; K. R. Solomons and M. L. Hanson, «Effects of planting sytem design on the toxicological sensitivity of Myriophyllum spicatum and Elodea canadensis to atrazine,» Chemosphere, Vol. 73, pp. 249-260, 2008.
[17] M. G. Maleva; G. F. Nekrasova; P. Malec; M. N. V. Prasad and K. Strzalka, «Ecophysiological tolerance of Elodea canadensis to nickel exposure,» Chemosphere, Vol. 77, pp. 392-398, 2009.
[18] N. Regier; F. Larras; A. Garcia Bravo; V. G.Ungureanu; D. Amouroux and C. Cosio. «Mercury bioarccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: Accumulation in shoots from the water might involve copper transpoters,» Chemosphere, Vol. 90, pp. 595-602, 2013.
[19] L. Bondareva; I. Vlasova; O. Moglinaya; A. Bolsunovsky and S. Kalmykov. «Microdistribution of 241Am in structures of submerged macrophyte elodea canadensis growing in the Yenisei River,» Jornal of Environmental Radioactivity, Vol. 101, pp. 16-21, 2010.
[20] M. M. Veiga; G. Angeloci-Santos and J. A. Meech. «Review of barriers to reduce mercury use in artisanal gold mining». The Extractive Industries and Society, Vol. 1, pp. 351-361, 2014.
[21] M. E. Finster; M. R. Raymond; M. A. Scofield and K. P. Smith. «Mercury-impact scrap metal: Source and nature of the mercury». Journal of Environmental Management, Vol. 161, pp. 303-308, 2015.
[22] Surriya, O. S. Sarah, K. Waqar y A. G. Kazi. «Phytoremediation of soils: Prospects and Challenges,» Soil Remediation and plants , Vol. 1, pp. 1-36, 2015.
[23] A. H. Fostier; J. J. Melendez-Perez and L. Richter. «Litter mercury deposition in the Amazonian rainforest». Environmental Pollution, Vol. 206, pp. 605-610, 2015.

Downloads

Download data is not yet available.

Cited by