Ingenierías USBMed
Dimensions

PlumX

How to Cite
Vallejo P., D., & Tenelanda V., G. (2012). Minería de datos aplicada en detección de intrusos. Ingenierías USBmed, 3(1), 50–61. https://doi.org/10.21500/20275846.264
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

Con base a los fundamentos y técnicas de la minería de datos se pueden diseñar y elaborar modelos que permiten encontrar comportamientos clandestinos de fácil detección a simple vista como lo es la información no evidente -desconocida a priori y potencialmente útil- en referencia a hechos determinados. En particular la utilidad de la minería de datos en esta área radica en una serie de técnicas, algoritmos y métodos que imitan la característica humana del aprendizaje: ser capaz de extraer nuevos conocimientos a partir de las experiencias. La minería de datos posee características como: análisis de grandes volúmenes de información, generación de comportamientos que no son fácilmente perceptibles, depuración de datos para toma de decisiones. Estas características pueden ser de vital importancia para ser aplicadas en la seguridad de la información a través de la detección de intrusos. En la actualidad la seguridad de la información es uno de los grandes retos que tiene el mundo, y en especial, la detección de anomalías en los registros de acceso de los diferentes sistemas de información. Con esta aplicabilidad resulta un método básico y muy eficiente de poder prevenir intrusiones. Se centra el campo de en la detección de intrusos al nutrir el proceso de seguimiento de los acontecimientos que ocurren en la red informática, seguido del análisis de los mismos; con el fin de detectar los factores que ponen en peligro la confidencialidad, integridad, disponibilidad y no repudio de los datos. En el presente trabajo se pretende mostrar el aporte a la seguridad de la información de la minería de datos en el contexto de la detección de intrusos.

References

M. S. Shin & K. J. Jeong. “Alert Correlation Analysis in Intrusion Detection”. Proceedings of the Second international conference on Advanced Data Mining and Applications ADMA'06, pp. 1049-1056, 2006.

M. Xue & C. Zhu. “Applied Research on Data Mining Algorithm in Network Intrusion Detection”. Proceedings International Joint Conference on Artificial Intelligence JCAI '09, pp. 275-277, 2009.

M. Castellano & G. B. de Grecis. “Applying a Flexible Mining Architecture to Intrusion Detection”. Proceedings Second International Conference on Availability, Reliability and Security, ARES 2007, pp. 845-852, 2007.

IBM. SPSS Modeler. Online [Jun. 2011].

KDD Cup 1999 Data. Online [Jun. 2011].

P. Chapman et al. “CRISP-DM 1.0: Step-by-step data mining guide”. SPSS Inc., 2000.

Wikipedia. “Ataque de denegación de servicio”. Online [Jun. 2011].

L. Wenke et al. “Real Time Data Mining-based Intrusion Detection”. DARPA Information Survivability Conference and Exposition, pp. 89-101, 2000.

L. Zenghui & L. Yingxu. “A Data Mining Framework for Building Intrusion Detection Models Based on IPv6”. Proceedings of the 3rd International Conference and Workshops on Advances in Information Security and Assurance ISA '09, pp. 608-628, 2009.

Downloads

Download data is not yet available.

Cited by