This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.
Therefore, the journal invokes the Creative Commons 4.0
License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.
Abstract
References
[2] V. Tsanaktsis; Z. Terzopoulou; S. Exarhopoulos; D. N. Bikiaris; D. S. Achilias; D. G. Papageorgiou and G. Z. Papageorgiou. “Sustainable, eco-friendly polyesters synthesized from renewable resources: preparation and thermal characteristics of poly(dimethylpropylenefuranoate)”. Polym. Chem., Vol. 6, No. 48, pp. 8284-8296, 2015.
[3] M. Peplow. “The plastics revolution: how chemists are pushing polymers to new limits”. Nature, Vol. 536, No. 7616, pp. 266–268, 2016.
[4] C. Vilela; A. F. Sousa; A. C. Fonseca; A. C. Serra; J. F. J. Coelho; C. S. R. Freire and A. J. D. Silvestre. “The quest for sustainable polyesters – insights into the future”. Polym. Chem., Vol. 5, No. 9, pp. 3119-3141, 2014.
[5] A. Llevot; P. K. Dannecker; M. von Czapiewski; L. C. Over; Z. Söyler and M. A. R. Meier. “Renewability is not enough: recent advances in the sustainable synthesis of biomass-derived monomers and polymers”. Chem. Eur. J., Vol. 22, No. 33, pp. 11510–11521, 2016.
[6] A. Soroudi and I. Jakubowicz. “Recycling of bioplastics, their blends and biocomposites: A review”. Eur. Polym. J., Vol. 49, No. 10, pp. 2839-2858, 2013.
[7] J. Hildebrandt; A. Bezama and D. Thrän. “Cascade use indicators for selected biopolymers: are we aiming for the right solutions in the design for recycling of bio-based polymers?”. Waste Manag. Res.,Vol. 35, No. 4, pp. 367-378, 2017.
[8] A. M. Ragossninge and D. R. Schneider. “What is the right level of recycling of plastic waste?”. Waste Manag. Res., Vol. 35, No. 2, pp. 129-131, 2017.
[9] J. D. Badia; O. Gil-Castell and A. Ribes-Greus. “Long-term properties and end-of-life of polymers from renewable resources”. Polym. Degrad. Stab., Vol. 137, pp. 35-57, 2017.
[10] T. Marulanda; L. F. Zapata y M. C. Jaramillo. “Producción de bioetanol a partir de Elodea sp.”. Ing. USBMed, Vol. 8, No. 1, pp. 37-42, 2017
[11] C. E. Aristizábal. “Caracterización físico-química de una vinaza resultante de la producción de alcohol de una industria licorera, a partir del aprovechamiento de la caña de azúcar”. Ing. USBMed, Vol. 6, No. 2, pp. 36-41, 2015.
[12] M. Niaounakis. Biopolymers: reuse, recycling and disposal. In W. Andrew (Ed.), Oxford: Elsevier Inc., 2013, pp. 77-94.
[13] M. Karamanlioglu; R. Preziosi and G. D. Robson. “Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): a review”. Polym. Degrad. and Stab., Vol. 137, pp. 122-130, 2017.
[14] S. M. Emadian; T. T. Onay and B. Demirel. “Biodegradation of bioplastics in natural environments”. Waste Manag., Vol. 59, pp. 526-536, 2017.
[15] A. Rudin and P. Choi. The elements of polymer science and engineering. Third edition, Oxford: Elsevier Inc., 2013, pp. 521-535.
[16] B. E. DiGregorio. “Biobased performance bioplastic: Mirel”. Chem. Biol., Vol. 16, No. 1, pp. 1-2, 2009.
[17] G. Pacheco; N. C. Flórez y R. Rodríguez-Sanoja. “Bioplásticos”, BioTecnología, Vol. 18, No. 2, pp. 27-36, 2014.
[18] J. B. van Beilen and Y. Poirier. Plants as factories for bioplastics and other novel biomaterials. In A. Altman and P. M. Hasegawa (Ed.) Plant Biotechnology and agriculture prospects for the 21st century, Oxford: Elsevier Inc., 2012, pp. 481-494.
[19] I. Leceta, A. Etxabide; S. Cabezudo; K. de la Caba and P. Guerrero, “Bio-based films prepared with by-products and wastes: environmental assessment,” J. Clean. Prod., Vol. 64, 218-277, 2014.
[20] R. Lee; M. Pranata; Z. Ustunol and E. Almenar. “Influence of glicerol and water activity on the properties of compressed egg white-based bioplastics”. J. Food Eng., Vol. 118, pp. 132-140, 2013.
[21] Y. Dou; B. Zhang; M. He; G. Yin and Y. Cui. “The structure, tensile properties and water resistance of hydrolyzed feather keratin-based bioplastics”. Chin. J. Chem. Eng., Vol. 24, No. 3, pp. 415-420, 2016.
[22] D. Gómez-Martínez; P. Partal; I. Martínez and C. Gallegos. “Gluten-based bioplastics with modified controlled-release and hydrophilic properties”. Ind. Crops Prod., Vol. 43, pp. 704-710, 2013.
[23] D. Escobar; R. Márquez; L. Repiso; A. Sala and C. Silvera. “Elaboración, caracterización y comparación de películas comestibles en base a aislado de proteínas de suero lácteo (WPI)”. Innotec, No. 3, pp. 57-62, 2008.
[24] D. Escobar; A. Sala; C. Silvera; R. Harispe y R. Márquez. “Películas biodegradables y comestibles desarrolladas en base a aislado de proteínas de suero lácteo: estudio de dos métodos de elaboración y del uso de sorbato de potasio como conservador”. Innotec, No. 4, pp. 33-36, 2009.
[25] A. B. M. S. Hossain; N. A. Ibrahim and M.S. AlEissa. “Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass”. Data Brief., Vol. 8, pp. 286-294, 2016.
[26] K. C. Liew and L. K. Khor. “Effect of different ratios of bioplastic to newspaper pulp fibres on the weight loss of bioplastic pot”. J. King Saud Univ. Sci., Vol. 27, No. 2, pp. 119-238, 2015.
[27] N. A. Mostafa; A. A. Faraq; H. M. Abo-dief and A. M. Tayeb. “Production of biodegradable plastic from agricultural wastes”. Arab. J. Chem., in press, corrected proof.
[28] N. S. M. Makhtara; M. F. M. Raisa; M. N. M. Rodhia; N. B. M. Musaa and K. H. K. Hamida. “Tacca Leontopetaloides starch: new sources starch for biodegradable plastic”. Procedia Eng., Vol. 68, pp. 385-391, 2013.
[29] D. P. Navia; H. S. Villada y A. A. Ayala. “Isotermas de adsorción de bioplásticos de harina de yuca moldeados por compresión”. Rev. Bio. Agro., Vol. 9, pp. 77-87, 2011.
[30] D. P. Navia; H. S. Villada y A. A. Ayala. “Evaluación mecánica de bioplásticos semirrígidos elaborados con harina de yuca”. Rev. Bio. Agro., Vol. 11, pp. 77-84, 2013.
[31] A. Arrieta y A. Jaramillo. “Bioplásticos eléctricamente conductores de almidón de yuca”. Rev. Col. Mat., No. 5, pp. 42-49, 2014.
[32] S. W. A. Ghani; A. A. Bakar and S. A. Samsudin. “Mechanical properties of chitosan modified montmorillonite filled tapioca starch nanocomposite films”. Adv. Mater. Res. Vol. 689, pp. 145–154, 2013.
[33] S. W. A. Ghani; A. A. Bakar and S. A. Samsudin. “Mechanical and physical properties of chitosan-compatibilized montmorillonite-filled tapioca starch nanocomposite films”. J. Plast. Film Sheeting, Vol. 32, No. 2, pp. 140-162, 2016.
[34] X. Dai and Z. Qiu. “Synthesis and properties of novel biodegradable poly (butylene succinate-co-decamethylene succinate) copolyesters from renewable resources”. Polym. Degrad. Stab., Vol. 134, pp. 305-310, 2016.
[35] G. Walther. “High-performance polymers from nature: catalytic routes and processes for industry”. Chem. Sus. Chem., Vol. 7, No. 8, pp. 2081–2088, 2014.
[36] A. F. Sousa; C. Vilela; A. C. Fonseca; M. Matos; C. S. R. Freire; G.-J. M. Gruter; J. F. J. Coelho and A. J. D. Silvestre. “Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency”. Polym. Chem., Vol. 6, No. 33, pp. 5961–5983, 2015.
[37] M. J. Soares; P.-K. Dannecker; C. Videla; J. Bastos; M. A. R. Meier and A. F. Sousa. “Poly (1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources”. Eur. Polym. J., In Press, Accepted Manuscript, 2017.
[38] K. M. Zia; A. Noreen; M. Zuber; S. Tabasum and M. Mujahid. “Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review”. Int. J. Biol. Macromolec., Vol. 82, pp. 1028-1040, 2016.
[39] C.-S. Wu. “Characterization and biodegradability of polyester bioplastic-based green renewable composites from agricultural residues”. Polym. Degrad. Stab., Vol. 97, pp. 64-71, 2012.
[40] N. Berezina; B. Yada and R. Lefebvre. “From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator”. N. Biotechnol., Vol. 32, No. 1, pp. 47-53, 2015.
[41] Y. Jiang; L. Marang; J. Tamis; M. C. M. van Loosdrecht; H. Dijkman and R. Kleerebezema. “Waste to resource: Converting paper mill wastewater to bioplastic”. Water Res., Vol. 46, No. 17, pp. 5517-5530, 2012.
[42] F. Hempel1; A. S. Bozarth; N. Lindenkamp; A. Kling; S. Zauner; U. Linne; A. Steinbüchel and U. G. Maier. “Microalgae as bioreactors for bioplastic production”. Microb. Cell Fact., Vol.10, 2011.
[43] G. Dogossy and T. Czigany. “Thermoplastic starch composites reinforced by agricultural by-products: properties, biodegradability, and application”. J. Reinf. Plast. Compos., Vol. 30, No. 21, pp. 1819-1825, 2011.
[44] A. Noreen; K. M. Zia; M. Zuber; M. Ali and M. Mujahid. “A critical review of algal biomass: a versatile platform of bio-based polyesters from renewable resources”. Int. J. Biol. Macromolec., Vol. 86, pp. 937-949, 2016.
[45] K. M. Zia; S. Tabasum; M. Nasif; N. Sultan; N. Aslam; A. Noreen and M. Zuber. “A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites”. Int. J. Biol. Macromolec., Vol. 96, pp. 282-301, 2017.
[46] F.P. La Mantia and M. Morreale. “Green composites: A brief review”. Compos Part A, Vol. 42, pp. 579-588, 2011.
[47] N. Peelman; P. Ragaert; B. De Meulenaer; D. Adons; R. Peeters; L. Cardon; F. Van Impe and F. Devlieghere. “Review: application of bioplastics for food packaging”. Trends Food Sci Technol., Vol. 32, No. 2, pp. 128-141.
[48] S. Suttiruengwong; S. Pitak; M. SaeDan; W. Wongpornchai and D. Singho. “Binary-additives toughened biopolymer for packaging application”. Energy procedia, Vol. 56, pp. 431-438, 2014.
[49] M. P. Balaguer; P. Fajardo; H. Gartner; J. Gomez-Estaca; R. Gavara; E. Almenar and P. Hernandez-Munoz. “Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin”. Int J Food Microbiol., Vol. 173, pp. 62-71, 2014.
[50] Y. M. Tan; S. H. Lim; B. Y. Tay; M. W. Lee and E. S. Thian. “Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology”. Mater. Res. Bull., Vol. 69, pp. 142-146, 2014.