Ingenierías USBMed
Dimensions

PlumX

How to Cite
Aristizabal Alzate, C. E. (2018). Energía Azul: generación de potencia a través de la Ósmosis por Presión Retardada (PRO). Ingenierías USBmed, 9(1), 3–8. https://doi.org/10.21500/20275846.3069
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

La emisión de gases efecto invernadero, tales como el CO2, causadas por el uso de combustibles fósiles y el crecimiento exponencial de la población mundial, han volcado los esfuerzos del hombre hacia la búsqueda de fuentes de energía limpia y sostenible, que satisfagan las necesidades energéticas actuales y las futuras. Por lo que se volvió una prioridad investigar y desarrollar tecnologías que aprovechen las energías renovables, una de ellas es la Ósmosis por Presión Retardada (PRO), el cual es un proceso o método de generación de energía eléctrica, que aprovecha el gradiente de salinidad entre dos soluciones, ya que la mezcla de una solución salina de concentración alta con agua fresca, disipa más de 2,2 MJ energía libre por m3 de agua dulce tratada. A escala industrial, se podría aprovechar la diferencia de concentración de sales entre los ríos y el mar, cerca de una zona conocida como estuario. La aplicación, viabilidad y eficiencia del proceso y la tecnología que funciona bajo este fenómeno, dependen de las características de la membrana semipermeable, como la potencia por unidad de área, y las propiedades físicas, químicas y de superficie de esta. En la actualidad se utilizan membranas de acetato de celulosa, las cuales dan potencias muy bajas (1W/m2). Sin embargo, se está investigando con membranas de materiales compuestos, como por ejemplo las basadas en grafeno, las cuales permiten un mayor flujo de agua a través de la membrana y potencias superiores a 5 W/m2.

References

[1] N. R., D. Mermier and C. P. Borges, “Direct osmosis process for power generation using salinity gradient: FO/PRO pilot plant investigation using hollow fiber modules,” Chem. Eng. Process. Process Intensif., vol. 103, pp. 27–36, 2016.
[2] K. Gerstandt, K. V. Peinemann, S. E. Skilhagen, T. Thorsen, and T. Holt, “Membrane processes in energy supply for an osmotic power plant,” Desalination, vol. 224, no. 1–3, pp. 64–70, 2008.
[3] G. O’Toole, L. Jones, C. Coutinho, C. Hayes, M. Napoles, and A. Achilli, “River-to-sea pressure retarded osmosis: Resource utilization in a full-scale facility,” Desalination, vol. 389, pp. 39–51, 2016.
[4] T. M. López, “Producción de Bioetanol a partir de Elodea sp . Production of Bioethanol from Elodea sp .,”, Ingenierías USBMed, vol. 8, no. 1, pp. 37–42, 2017.
[5] A. Altaee and A. Sharif, “Pressure retarded osmosis: Advancement in the process applications for power generation and desalination,” Desalination, vol. 356, pp. 31–46, 2015.
[6] Z. J. Jia, B. G. Wang, S. Q. Song, and Y. S. Fan, “Blue energy: Current technologies for sustainable power generation from water salinity gradient,” Renew. Sustain. Energy Rev., vol. 31, pp. 91–100, 2014.
[7] K. Sharma, Y. H. Kim, S. Yiacoumi, J. Gabitto, H. Z. Bilheux, L. J. Santodonato, R. T. Mayes, S. Dai, and C. Tsouris, “Analysis and simulation of a blue energy cycle,” Renew. Energy, vol. 91, pp. 249–260, 2016.
[8] H. D. S. S. Karunarathne and S. Walpalage, “Applicability of pressure retarded osmosis power generation technology in Sri Lanka,” Energy Procedia, vol. 34, pp. 211–217, 2013.
[9] K. Touati and F. Tadeo, “Green energy generation by pressure retarded osmosis: State of the art and technical advancement—review,” Int. J. Green Energy, vol. 14, no. 4, pp. 337–360, 2017.
[10] O. Álvarez-Silva, A. Osorio, S. Ortega, and P. Agudelo-Restrepo, “Estimation of the electric power potential using pressure retarded osmosis in the leon river’s mouth: A first step for the harnessing of saline gradients in colombia,” Ocean. 2011 IEEE - Spain, 2011.
[11] E. Nagy, J. Dudás, and I. Hegedüs, “Improvement of the energy generation by pressure retarded osmosis,” Energy, p. , 2016.
[12] F. Helfer, C. Lemckert, and Y. G. Anissimov, “Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends - A review,” J. Memb. Sci., vol. 453, pp. 337–358, 2014.
[13] K. L. Hickenbottom, J. Vanneste, M. Elimelech, and T. Y. Cath, “Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis,” Desalination, pp. 108–118, 2015.
[14] H. Sakai, T. Ueyama, M. Irie, K. Matsuyama, A. Tanioka, K. Saito, and A. Kumano, “Energy recovery by PRO in sea water desalination plant,” Desalination, vol. 389, pp. 52–57, 2016.
[15] J. Lee and S. Kim, “Predicting power density of pressure retarded osmosis (PRO) membranes using a new characterization method based on a single PRO test,” Desalination, vol. 389, pp. 224–234, 2016.
[16] S. Sarp and J. Cho, “Editorial of the special issue for pressure retarded osmosis,” Desalination, vol. 389, p. 1, 2016.
[17] A. Tanioka, “Preface to the special issue on ‘Pressure Retarded Osmosis in Megaton Water System Project,’” Desalination, vol. 389, pp. 15–17, 2016.
[18] S. Sarp, Z. Li, and J. Saththasivam, “Pressure Retarded Osmosis (PRO): Past experiences, current developments, and future prospects,” Desalination, vol. 389, pp. 2–14, 2016.
[19] K. Touati and T. Schiestel, “Evaluation of the Potential of Osmotic Energy as Renewable Energy Source in Realistic Conditions,” Energy Procedia, vol. 42, pp. 261–269, 2013.
[20] A. Achilli, T. Y. Cath, and A. E. Childress, “Power generation with pressure retarded osmosis: An experimental and theoretical investigation,” J. Memb. Sci., vol. 343, no. 1–2, pp. 42–52, 2009.

Downloads

Download data is not yet available.

Cited by