Ingenierías USBMed
Dimensions

PlumX

How to Cite
Mendoza Casseres, D. A., Corcho Martínez, R. A., & Berdugo Alonso, A. (2014). Metaheurística para disminuir penalizaciones del laycan en programación de carga de buques al granel. Ingenierías USBmed, 5(2), 44–52. https://doi.org/10.21500/20275846.310
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

La carga de buques al granel es una operación portuaria que se utiliza para transportar cereales, minerales o cargas mixtas. La programación para la carga de los buques, la realiza el fletador teniendo en cuenta una cláusula del contrato de fletamento donde se fija la fecha final de iniciar la carga y la fecha inicial en la cual el buque es requerido (Laycan). Un buque programado fuera del Lyacan causa una penalización monetaria proporcional al tiempo de quebrantamiento. En esta investigación se utiliza una Metaheurística para programar seis buques al granel, los cuales pueden ser cargados simultáneamente por dos shiploaders idénticos en un puerto. Se supuso que los buques se programaran por fracciones mediante un job splitting. Los resultados obtenidos fueron comparados con la forma habitual de programación, demostrando que la Metaheurística disminuye la penalización total obtenida.

References

V. Gabrel. Scheduling jobs within time windows on identical parallel machines: New model and algorithms. Elsevier Science B.V. European Journal of Operational Research, Vol. 83, issue 2, pp 320-329. Jun. 1995.

W. Xing and J. Zhang. Parallel machine scheduling with splitting jobs. Elsevier Science B.V. Discrete Applied Mathematics, Vol. 103, issues 1-3, pp. 259–269, Jul. 2000.

J. L. Hurink; W. Kern and W. Nawijn. Scheduling split-jobs on parallel machines. Twente, University of Twente, Faculty of Mathematical Sciences. NL-7500 AE Enschede. Jun. 2000.

F. Schalekamp; R. Sitters; S. Van der Ster; L. Stougie; V. Verdugo and A. Van Zuylen. Split scheduling with uniform setup times. Journal of scheduling. 10.1007/s10951-014-0370-4. Jan. 2014.

P. Serafini. Scheduling jobs on several machines with the job splitting property, Udine, University of Udine, Department of Mathematics and Computer Science. Jan. 1996.

H.NAZIF and L. S. LEE. Solving Single Machine Scheduling Problem with Maximum Lateness Using a Genetic Algorithm. Journal of Mathematics Research, Vol. 2, Number 3, p. 5, Aug. 2010.

G. A. Süer; X. Yang; O. I. Alhawari; J. Santos and R. Vazquez. A Genetic Algorithm Approach for Minimizing Total Tardiness in Single Machine Scheduling. International Journal of Industrial Engineering and Management (IJIEM), Vol. 3, issue 3, pp. 163-171, Sep. 2012.

L. Sun; X. Cheng and Y. Liang. Solving Job Shop Scheduling Problem Using Genetic Algorithm with Penalty Function. International Journal of Intelligent Information Processing, Vol. 1, Number 2, Dec. 2010.

M. Gen; R. Cheng and L. Lin. Network Models and Optimization Multiobjective Genetic Algorithm Approach. Springer-Verlag, London, 2008, p. 1.

Dutch port guide. (2013, Jan.) glossary, Laycan. [Online]. Available:http://www.dutchportguide.com/component/option,com_glossary/id,525/.

M. Gen; R. Cheng and L. Lin. Network Models and Optimization Multiobjective Genetic Algorithm Approach. Springer-Verlag, London, 2008, p. 2.

M. Gen; R. Cheng and L. Lin. Network Models and Optimization Multiobjective Genetic Algorithm Approach. Springer-Verlag, London, 2008, p. 3.

Downloads

Download data is not yet available.

Cited by