Ingenierías USBMed
Dimensions

PlumX

How to Cite
Vargas Bermúdez, F. A., & Báez Pérez, C. I. (2019). Estrategias de planificación para datos y procesos en computación Grid: estado del arte. Ingenierías USBmed, 10(1), 40–52. https://doi.org/10.21500/20275846.3805
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

La distribución y la naturaleza compartida y heterogénea de la computación grid, hace que su objetivo de ofrecer aplicaciones con poder computacional colectivo, sea un gran reto. El objetivo es presentar el resultado de una investigación sistemática sobre aspectos teóricos de las temáticas que convergen en el diseño y desarrollo de planificadores de datos y procesos en computación grid. Se tomó como referente la metodología planteada para desarrollo de estados de arte, que cuenta con dos fases principales: heurística y hermenéutica. En el proceso se analizaron los fundamentos teóricos, tales como: la arquitectura, las etapas que conforman el proceso realizado por parte de un planificador grid y los tipos de planificación existentes, todo ello con el objeto de abordar los diferentes modelos y enfoques computacionales, heurísticos y metaheurísticos que permiten un funcionamiento eficiente y eficaz de manera óptima de los planificadores grid, permitiendo mitigar en cierto grado los problemas presentados en la planificación grid. La optimización de la planificación de recursos grid, es un área que se encuentra en desarrollo, dado que las problemáticas principales como: demora en la planificación y el proceso de optimización, están aún en etapa de desarrollo.

References

[1] J. F. Fuller; E. F. Fuchs and K. J. Roesler. “Influence of harmonics on power distribution system protection”. IEEE Trans. Power Delivery, Vol. 3, No. 2, pp. 549-557, Apr. 1988.
[2] E. H. Miller. “A note on reflector arrays”. IEEE Trans. Antennas Propagat., to be published.
[3] E. Clarke. Circuit Analysis of AC Power Systems. New York: Wiley, 1950, p. 81.
[4] G. O. Young. Synthetic structure of industrial plastics. In J. Peters (Ed.) Plastics, New York: McGraw-Hill, 1964, pp. 15-64.
[5] E. E. Reber; R. L. Mitchell and C. J. Carter. Oxygen absorption in the Earth's atmosphere. Aerospace Corp., Los Angeles, CA, Tech. Rep. TR-0200 (4230-46)-3, Nov. 1968.
[6] D. Ebehard and E. Voges. “Digital single sideband detection for interferometric sensors”. Presented at the 2nd Int. Conf. Optical Fiber Sensors, Stuttgart, Germany, PP. 34-42, 1984.
[7] J. L. Alqueres and J. C. Praca. “The Brazilian power system and the challenge of the Amazon transmission”. Proc. 1991 IEEE Power Engineering Society Transmission and Distribution Conf., Madrid, Spain, pp. 315-320, 1991.
[8] K. M. Rahman. “Design and control of switched reluctante motor for electric and hybrid electric vehicle application”. Ph.D. dissertation, directed by H. A. Toliyat and M. Ehsani, Texas A&M University, Collage Station, Texas, Dec. 1998.
[1] I. Foster, C. Kesselman, J.M. Nick y S. Tuecke. (2002). The physiology of the grid: an open grid services architecture for distributed systems integration. En: http://docencia.ac.upc.edu/dso/papers/ogsa.pdf
[2] J. Yu, y R. Buyya, (2006, Ene, 24). A taxonomy of workflow management systems for grid computing. Journal of grid computing, 3(4), pp. 171-200. doi: https://doi.org/10.1007/s10723-005-9010-8
[3] M. Roffilli, V. Maniezzo, y M. Boschetti. (2006, octubre). “Grid-based services for optimized freight distribution”, Presentado en: International Conference on Service Systems and Service Management. Troyes, France. doi: https://ieeexplore.ieee.org/abstract/document/4114494/
[4] S. Hutterer, A. Beham, M. Affenzeller, F. Auinger y S. Wagner. (2014). Software-enabled investigation in metaheuristic power grid optimization. IEEE Transactions on Industrial Informatics, 10(1), pp. 364–372. doi: 10.1109/TII.2013.2276525
[5] I. Foster, C. Kesselman y S. Tuecke. (2001). The anatomy of the grid: enabling scalable virtual organizations. International Journal of High Performance Computing Applications. Volumes 15 (número 3). doi: 10.1177/109434200101500302.
[6] R.A. Hurtado Mosquera y A. Rodas Vásquez. (2009). El Grid: Una manera de aparecer en el mundo. Entre Ciencia e Ingeniería, 3(5), pp. 130-143. En: http://biblioteca.ucp.edu.co/OJS/index.php/entrecei/article/view/1947/1853
[7] R. López Herrero. (2007). Aplicación de las tecnologías grid y de las arquitecturas orientadas a servicios en el análisis de estructuras de edificación. (Tesis inédita de Máster). Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, Valencia, España.
[8] A.R. Butt, R. Zhang y Y.C. Hu, (2003, noviembre). “A self-organizing flock of condors”. Presentado en Journal of Parallel and Distributed Computing, 66, pp. 145-161, Phoenix, AZ, USA, USA. doi: 10.1145/1048935.1050192
[9] G.M. Martínez. (2007). Computación de altas prestaciones sobre entornos grid en aplicaciones biomédicas: simulación de la actividad eléctrica cardiaca y diseño de proteínas. (Tesis inédita doctoral). Departamento de Sistemas informáticos y Computación, Universidad Politécnica de Valencia, Valencia, España.
[10] I. Foster y C. Kesselman. (1999). The globus project: a status report. Future Generation Computer Systems, 15, pp. 607-621. doi: 10.1109/HCW.1998.666541
[11] N.B. Trejo. (2008). Aplicación de Multicast IPv6 Seguro a Servicios de Información en Entornos Grid. (Tesis inédita de maestría). Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Madrid.
[12] P. Kumar Tiwari and D. Prakash Vidyarthi. (2016). Improved auto control ant colony optimization using, lazy ant approach for grid scheduling problema. Future Generation Computer Systems, 60, pp. 78-89. doi: https://doi.org/10.1016/j.future.2016.01.017
[13] A. Fernández, E. Heymann, J. Salt y M.A. Senar, “Servicios de asignación y planificación de recursos Grid: allocation and scheduling services of grid resources,” Boletín de RedIRIS, [Online], no. 66-67, pp. 7-11, dic. 2003 - Ene. 2004. Available: https://www.rediris.es/difusion/publicaciones/boletin/66-67/ponencia2.pdf
[14] A. Fernández Casaní. (2004). Arquitecturas grid orientadas a la gestión de recursos. Trabajo de investigación, Instituto de Física Corpuscular, Universidad Politécnica de Valencia, Universidad Autónoma de Barcelona, España. En: http://ific.uv.es/grid/computacion-grid-ific/doc/ArquitecturasGrid-AlvaroFernandez.pdf
[15] T. Cavdar y M. Talha Kakiz. (2017, septiembre). Threshold-based negotiation framework for grid resource allocation. The Institution of Engineering and Technology, 11(14), pp. 2236-2243. doi: 10.1049/iet-com.2017.0352
[16] K. Srikala y S. Ramachandram. (2015, diciembre). Fault Tolerant Scheduling of Workflows in Grid Computing Environment (FTSW). Presentado en Global Conference on Communication Technologies(GCCT 2015), Thuckalay, India. pp. 343-347. doi: 10.1109/GCCT.2015.7342680
[17] K. Loheswaran, B. Navin, S. Sharmila Devi y S. Saranya. (2010, diciembre). Scheduling and resource management using PSO in P-grid. Presentado en: 2010 International Conference on Communication and Computational Intelligence (INCOCCI), pp. 399-403, Erode, India. En: https://ieeexplore.ieee.org/abstract/document/5738763/
[18] E. Torres. (2010). Técnicas de monitorización y diferenciación de servicios para la asignación de recursos en entornos de computación Grid, en base a indicadores de nivel de servicio. (Tesis inédita de doctorado). Informática, Universidad Politécnica de Valencia, Valencia, España.
[19] U. Schwiegelshohn, R.M. Badiab, M. Bubakc, M. Daneluttoe, S. Dustdarf, F. Gagliardig, A. Geigerh, L. Hluchyi, D. Kranzlmüllerj, E. Laurek, T. Prioll, A. Reinefeldm, M. Reschn, A. Reutero, O. Rienhoffp, T. Rüterq, P. Slootr, D. Talias, K. Ullmannu, y R. Yahyapour. (2010). Perspectives on grid computing. Future Generation Computer Systems, 26(8), pp. 1104-1115. doi: https://doi.org/10.1016/j.future.2010.05.010
[20] K. Krauter, R. Buyya, y M. Maheswaran. (2002). A taxonomy and survey of grid resource management systems for distributed computing. Software-Practice and Experience, 32, pp. 135-164. doi: 10.1002/spe.432
[21] K. Leal. (2010). Estrategias de planificación en infraestructuras grid federadas,” [Online]. (Tesis inédita de doctorado). Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Madrid.
[22] L. Lee, C. Liang y H. Chang. (2006, diciembre). “An adaptive task scheduling system for Grid Computing”. Presentado en Proceedings of the Sixth IEEE international Conference on Computer and information Technology CIT'066, Seoul, Korea. doi: 10.1109/CIT.2006.36
[23] H.H. Hoos, K. Smyth y T. Stützle. (2004). Search Space Features Underlying the Performance of Stochastic Local Search Algorithms for MAX-SAT. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, 3242, pp. 51-60. Alemania, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-540-30217-9_6.
[24] F. Xhafa y J. Kołodziej. (2010). “Game-theoretic, Market and MetaHeuristics Approaches for Modelling Scheduling and Resource Allocation in Grid Systems”. Presentado en International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. IEEE, Fukuoka, Japan. doi: 10.1109/3PGCIC.2010.39
[25] N. Fujimoto y K. Hagihara. (2003, octubre). “Near-optimal dynamic task scheduling of precedence constrained coarse-grained tasks onto a computational grid”. Presentado en 2d Int'l Symposium on Parallel and Distributed Computing, Slovenia, Ljubljana, pp. 80-87. doi: http://doi.ieeecomputersociety.org/10.1109/ISPDC.2003.1267647
[26] E. Ambrosi, A. Ghiselli y G. Taffoni. (2006). GDSE: A New Data Source Oriented Computing Element for Grid. Presentado en ACM DL. PDCN'06 Proceedings the 24th IASTED International Conference Parallel and Distributed Computing, Austria, Innsbruck, pp 53-57.
[27] Y. Zhu y L.M. Ni. (2013). A survey on grid scheduling systems. Technical Report, SJTU_CS_TR_200309001. Department of Computer Science and Engineering, Shanghai Jiao Tong University. En: http://www.cs.sjtu.edu.cn/~yzhu/reports/SJTU_CS_TR_200309001.pdf
[28] B. Jarboui, M. Eddaly y P. Siarry. (2011). A hybrid genetic algorithm for solving no-wait flowshop scheduling problems International Journal of Advanced Manufacturing Technology, 54, 1129-1143. doi: https://doi.org/10.1007/s00170-010-3009-4
[29] A. Mungwattana y K. Ploydanai. (2010). "Future Makespan Heuristic for job shop scheculing problem". Presentado en: The 40th International Conference on Computers & Indutrial Engineering, Awaji, Japón, pp. 1-5. doi: 10.1109/ICCIE.2010.5668277
[30] H. Viswanathan, E.K. Lee y D. Pompili. (2016, noviembre). A Multi-Objective Approach to Real-Time In-Situ Processing of Mobile-Application Workflows. IEEE Transactions on Parallel and Distributed Systems, 27(11), pp. 3116-3130. doi: 10.1109/TPDS.2016.2532864
[31] M. Arsuaga Ríos. (2015). Optimización multiobjetivo para la planificación de trabajos en entornos de computación distribuida. (Tesis inédita de doctorado). Departamento de Tecnología de los Computadores y de las Comunicaciones, Universidad de Extremadura, España.
[32] J. Carretero, F. Xhafa y A. Abraham. (2007). Genetic Algorithm Based Schedulers for Grid Computing Systems. International Journal of Innovative Computing, Information and Control: IJICIC, 3(6). PP. 1-19. En: http://ajith.softcomputing.net/ijicic2.pdf
[33] F. Xhafa, J.A. Gonzalez, K.P. Dahal y A. Abraham. (2009). A GA(TS) Hybrid Algorithm for Scheduling in Computational Grids. Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science, 5572, Springer, Berlin, Heidelberg, Alemania. doi: https://doi.org/10.1007/978-3-642-02319-4_34
[34] E. Nabiel Alkhhanak, S. Peck Lee, R. Rezaei y R. Meimandi Parizi. (2016). Cost optimization approaches for scientific workflow scheduling in cloud and grid computing: a review, classifications, and open issues. The Journal of Systems and Software, 113, pp. 1-26. doi: https://doi.org/10.1016/j.jss.2015.11.023
[35] A. Liefooghe, S. Mesmoudi, J. Humeau, L. Jourdan y E.G. Talbi. (2009). A Study on Dominance-Based Local Search Approaches for Multiobjective Combinatorial Optimization. Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2009. Lecture Notes in Computer Science, 5752. Springer, Heidelberg, Berlin, Alemania. doi: https://doi.org/10.1007/978-3-642-03751-1_11
[36] S.B. Priya, M. Prakash y K.K. Dhawan. (2007). "Fault Tolerance-Genetic Algorithm for Grid Task Scheduling using Check Point," Presentado en Sixth International Conference on Grid and Cooperative Computing (GCC 2007), Los Alamitos, CA, USA. pp. 676-680. doi: 10.1109/GCC.2007.67
[37] M. Gendreau y J.Y. Potvin. (2005). Metaheuristics in combinatorial optimization. Annals of Operations Research, 140(1), pp. 189-213. doi: https://doi.org/10.1007/s10479-005-3971-7
[38] Z. Michalewicz y D. Fogel. (2004). How to Solve it: Modern Heuristics, Berlín, Alemania: Springer. pp. 551
[39] D. Henderson, S.H. Jacobson y A.W. Johnson. (2003) The Theory and Practice of Simulated Annealing. Handbook of Metaheuristics. International Series in Operations Research & Management Science, 57, pp. 287-319. doi: https://doi.org/10.1007/0-306-48056-5_10
[40] F.J. Rodríguez-Díaz, C. García-Martínez y M. Lozano. (2010, julio). “A GA-based multiple simulated annealing”. Presentado en IEEE Congress on Evolutionary Computation, Barcelona, España. doi: 10.1109/CEC.2010.5586472
[41] S. Meeran y M.S. Morshed. (2012). A hybrid genetic tabu search algorithm for solving job shop scheduling problems: a case study. Journal of Intelligent Manufacturing, 23 (4), pp. 1063-1078. doi: https://doi.org/10.1007/s10845-011-0520-x
[42] Y. Liu, Y. Liu, L. Wang y K. Chen. (2005) A Hybrid Tabu Search Based Clustering Algorithm. Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science, 3682, pp. 186-192. doi: https://doi.org/10.1007/11552451_25
[43] A. Fabrizio y F. Gianluigi. A Grid-based Architecture for Nearest Neighbor Based Condensation of Huge Datasets. Proceedings of the third international workshop on Use of P2P, grid and agents for the development of content networks, Boston, New York, USA. doi: 10.1145/1384209.1384213
[44] F. Zamfirache, M. Frîncu y D. Zaharie. (2011) Population-Based Metaheuristics for Tasks Scheduling in Heterogeneous Distributed Systems. Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, 6046, pp. 321-328. doi:
https://doi.org/10.1007/978-3-642-18466-6_38
[45] A. Abraham, H. Liu, C. Grosan y F. Xhafa. (2008). Nature Inspired Meta-heuristics for Grid Scheduling: Single and Multi-objective Optimization Approaches. Metaheuristics for Scheduling in Distributed Computing Environments. Studies in Computational Intelligence, 146, pp. 247-272. doi: https://doi.org/10.1007/978-3-540-69277-5_9
[46] S. Xue, C. Li, M. Yang y J. Nie. (2010, septiembre). Grid resource scheduling based on improved differential evolution algorithms. Presentado en Sixth International Conference on Natural Computation, Yantai, Shandong, China, pp. 4030-4034. doi: 10.1109/ICNC.2010.5584832
[47] I. Kamkar, M. Poostchi y M.R. Akbarzadeh Totonchi. (2010). A Cellular Genetic Algorithm for Solving the Vehicle Routing Problem with Time Windows. Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, 75, pp. 263-270. doi: https://doi.org/10.1007/978-3-642-11282-9_28
[48] Q. W. Fan, P. Wang, H.Q. Zhang y X.J. Gao. (2010). Analysis of running mechanism of crossover operators in genetic algorithm. Journal of Beijing University of Technology, 10.
[49] J.D. Bunton, A.T. Ernst y M. Krishnamoorthy, (2017, Nov, 13). An Integer programming based ant colony optimization method for nurse rostering. Proceedings of the Federated Conference on Computer Science and Information Systems, 11, pp. 407–414. doi: 10.15439/2017F237
[50] I. Hesam y T. Ladani. (2010). A Novel Particle Swarm Optimization Approach for Grid Job Scheduling. Communications in Computer and Information Science Information Systems. Technology and Management, 31 (5), pp. 100-109. doi: https://doi.org/10.1007/978-3-642-00405-6_14
[51] C. Jiang, C. Wang, X. Liu y Y. Zhao. (2007) A Survey of Job Scheduling in Grids. Advances in Data and Web Management. APWeb 2007, WAIM 2007. Lecture Notes in Computer Science, vol 4505. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-540-72524-4_44
[52] E.G. Talbi. (2002). A Taxonomy of Hybrid Metaheuristics. Journal Heuristics, 8 (5), pp. 541-564. doi: https://doi.org/10.1023/A:1016540724870
[53] C. Bluma, J. Puchinger, G. Raidl y A. Roli. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11 (6), pp. 4135 – 4151. doi: https://doi.org/10.1016/j.asoc.2011.02.032
[54] X. Sun, K. Zhang, M. Ma y H. Su. (2017). Multi-Population Ant Colony Algorithm for Virtual Machine Deployment. IEEE Access, 5, pp. 27014-27022. doi: 10.1109/ACCESS.2017.2768665
[55] F. Dong y S.G. Akl. (2006). Scheduling algorithms for grid computing: state of the art and open problems. Technical Report. No. 2006-504. En: http://ftp.qucis.queensu.ca/TechReports/Reports/2006-504.pdf
[56] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross y S. Schulenburg. (2003) Hyper-Heuristics: An Emerging Direction in Modern Search Technology. En: Glover F., Kochenberger G.A. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science. Boston, MA, USA: Springer, 457-474. doi: https://doi.org/10.1007/0-306-48056-5_16
[57] G. Kendall y H. Naimah. (2005). An Investigation of a Tabu-Search-Based Hyper-Heuristic for Examination Timetabling. Multidisciplinary scheduling: theory and applications, Part 8, pp. 309-328. doi: https://doi.org/10.1007/0-387-27744-7_15
[58] F. Xhafa. (2007). A hyper-heuristic for adaptive scheduling in computational grids. International Journal on Neural and Mass-Parallel Computing and Information Systems, 17 (6), pp. 639-656.
[59] R. Buyyat, D. Abramsont y J. Giddy. (2002). Nimrod/G: An Architecture for a Resource Management and Scheduling System in a Global Computational Grid. Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, Beijing, China, 1, pp. 283-289. doi: 10.1109/HPC.2000.846563
[60] L. Zou, F. Liu y Y. Ma. “Grid Service Scheduling Algorithm Based on Marginal Principle”. Presentado en Seventh International Conference on Grid and Cooperative Computing. IEEE, 2008. doi: 10.1109/GCC.2008.84
[61] A. Haque, S.M. Alhashmi y R. Parthiban. A survey of economic models in grid computing. Future Generation Computer Systems, 27 (8), pp. 1056-1069, 2011. doi: https://doi.org/10.1016/j.future.2011.04.009
[62] H. Liu, A. Ajith y H. Aboul. (2009). Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm. Future Generation Computer Systems, 26 (8), pp. 1336-1343. doi: https://doi.org/10.1016/j.future.2009.05.022
[63] H. Baghban y A. Rahmani. (2008, octubre). “A Heuristic on Job Scheduling in Grid Computing Environment,” Presentado en Seventh International Conference on Grid and Cooperative Computing, Shenzhen, China. doi: 10.1109/GCC.2008.22
[64] K. Leal, E. Huedob y I. Llorente. A decentralized model for scheduling independent tasks. Federated Grids. Future Generation Computer Systems. 25 (8), pp. 840-852. doi: https://doi.org/10.1016/j.future.2009.02.003
[65] J.C. Blanco. (2017). Agregación de infraestructuras computacionales usando técnicas de meta-planificación centradas en el usuario. (Tesis inédita de doctorado). Doctorado en Matemáticas y Computación, Universidad de Cantabria, Cantabria, España.
[66] R. Umar, A. Agarwal y C.R. Rao. (2012). Advance Planning and Reservation in a Grid System. En: Benlamri R. (eds) Networked Digital Technologies. NDT 2012. Communications in Computer and Information Science, 293. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-30507-8_15
[67] R. Wolski, N.T. Spring y J. Hayes. (1999). “The network weather service: a distributed resource performance forecasting service for metacomputing,” Future Generation Computer Systems. 15, pp. 757-768. doi: https://doi.org/10.1016/S0167-739X(99)00025-4
[68] M.F. Akbar, E.U. Munir, M. Mustafa Rafique, Z. Malik, S.U. Khan y L.T. Yang. (2016, diciembre). “List-Based Task Scheduling for Cloud Computing”. Presentado en 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.143
[69] J. Zhu, X. Li, R. Ruiz, X. Xu y Y. Zhang. (2016, Junio). “Scheduling Stochastic Multi-stage Jobs on Elastic Computing Services in Hybrid Clouds”. Presentado en 2016 IEEE International Conference on Web Services (ICWS), San Francisco, CA, USA. doi: 10.1109/ICWS.2016.94
[70] F. Dong, J. Luo, L. Gao y L. Ge. (2006, octubre). “A Grid Task Scheduling Algorithm Based on QoS Priority Grouping”. Presentado en Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06). IEEE, Hunan, China. doi: 10.1109/GCC.2006.7
[71] J. Liu, C. Zhou, J. Chen, H. Liu y Y. Wen. (2007). "A Job Scheduling Optimization Model based on Time Difference in Service Grid Environments". Presentado en: Sixth International Conference on Grid and Cooperative Computing (GCC 2007), Los Alamitos, CA, USA. pp. 283-287.
doi: 10.1109/GCC.2007.13
[72] H. Zhang, W. Chanle, Q. Xiong, W. Libing y Y. Gang. (2006). “Research on an Effective Mechanism of Task-scheduling in Grid Environment”. Presentado en: Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06), Hunan, China. doi: 10.1109/GCC.2006.79
[73] H. Yin, W. Huilin y J. Zhou, (2007, agosto). “An Improved Genetic Algorithm with Limited Iteration for Grid Scheduling”. Presentado en: The Sixth International Conference on Grid and Cooperative Computing, Los Alamitos, CA, USA. 2007. doi: 10.1109/GCC.2007.42
[74] P. Lukasik P y M. Sysel. (2014, mayo). An Intranet Grid Computing Tool for Optimizing Server Loads. In: Silhavy R., Senkerik R., Oplatkova Z., Silhavy P., Prokopova Z. (eds) Presentado en: 3rd Computer Science On-line Conference 2014 (CSOC 2014). Modern Trends and Techniques in Computer Science. Advances in Intelligent Systems and Computing, Springer, Cham, 285, pp. 467 – 474. doi: https://doi.org/10.1007/978-3-319-06740-7_39
[75] A. Ammar, H. Bennaceur, I. Châari, A. Koubâa y M. Alajlan. (2016). Relaxed Dijkstra and A with linear complexity for robot path planning problems in large-scale grid environments. Soft Comput, 20(10), pp. 4149-4171. doi: https://doi.org/10.1007/s00500-015-1750-1
[76] R. Sharma, V.K. Soni, M.K. Mishra y P. Bhuyan. (2010). A survey of job scheduling and resource management in grid computing. International Scholarly and Scientific Research & Innovation. Volumen 4 (4), pp. 461–466. En: http://waset.org/publications/6334/pdf
[77] M.L. Chiang, H.C. Hsieh, W.C. Tsai y M.C. Ke. (2017, Noviembre). “An improved task scheduling and load balancing algorithm under the heterogeneous cloud computing network”. Presentado en: 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), Taichung, Taiwan. doi: 10.1109/ICAwST.2017.8256465
[78] X. Chu y R. Buyya. (2007). Service Oriented Sensor Web. In: Mahalik N.P. (eds) Sensor Networks and Configuration. Springer, Berlin, Heidelberg. pp. 51-74. doi: https://doi.org/10.1007/3-540-37366-7_3
[79] F.A. Vargas Bermúdez y J.N. Pérez. (2008). Prototipo de modelo de persistencia para la variable temperatura irradiada, sensada por un geosensor para ser almacenada en ambiente grid. Revista Colombiana de Tecnologías de Avanzada. 1 (13). pp. 117-124, En: http://www.unipamplona.edu.co/unipamplona/portalIG/home_40/recursos/03_v13_18/revista_13/04112011/15.pdf
[80] J.A. Blanco Velandia y J.N. Pérez Castillo. (2012). Redes inalámbricas de geosensores aplicadas en sistemas de observación y monitoreo ambiental. Revista Gerencia Tecnológica Informática. 11 (29). Pp. 59-68. En: http://revistas.uis.edu.co/index.php/revistagti/article/view/2817/3059
[81] J.A. Blanco Velandia y J.N. Pérez Castillo. (2012). Plataforma de computación grid para redes inalámbricas de geosensores. Revista Gerencia Tecnológica Informática. Volumen 11 (31). pp. 35-43. En: http://revistas.uis.edu.co/index.php/revistagti/article/view/3046/3323
[82] C.I. Báez Pérez y J.N. Pérez Castillo. (2009). Planteamiento de un modelo para los servicios grid de notificación y registro de información geográfica. Revista Gerencia Tecnológica Informática. 8 (20). pp. 13-22. En: http://revistas.uis.edu.co/index.php/revistagti/article/view/763/1057
[83] J.F. Gómez Estupiñan y J.N. Pérez Castillo. (2011). Habilitamiento de la Web para manejo de información de geosensores: servicio de observación de sensores y servicio de planificación de sensores. Una mirada hacia sensor Grid. Revista Gerencia Tecnológica Informática. 10 (26), pp. 55-65. En: http://revistas.uis.edu.co/index.php/revistagti/article/view/2293/2648
[84] C.I. Báez Pérez y J.N. Pérez Castillo. (2007). De las redes inalámbricas de geosensores a la Web de sensores. Revista Gerencia Tecnológica Informática. 6 (16), pp. 63-70. En: http://revistas.uis.edu.co/index.php/revistagti/article/view/1257/1654
[85] Open Geospatial Consortium Inc. OpenGIS® Sensor Web Enablement Architecture Document. Editors: Mike Botts, Alex Robin, John Davidson y Ingo Simonis. 2006.

Downloads

Download data is not yet available.

Cited by