Ingenierías USBMed
Dimensions

PlumX

How to Cite
Gil Parra, S. A., & Espinosa Bedoya, A. (2022). Modelo cinemático del martillo de un molino de martillos operando sin carga empleando la mecánica de Lagrange. Ingenierías USBmed, 10(1), 28–33. https://doi.org/10.21500/20275846.3871 (Original work published March 30, 2019)
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

La mecánica de Lagrange permite modelar y simular las variables cinemáticas de máquinas, sistemas mecánicos o mecanismos complejos, su aplicación es general y se ha usado en máquinas agrícolas, robótica entre otros. En el caso del molino de martillos el foco se centra en el sistema tambor-martillo. Las características geométricas de los elementos del sistema y la velocidad de entrada fueron tomadas empleando instrumentos de medición. El modelado del sistema empleando la Mecánica de Lagrange permitió obtener ecuaciones diferenciales que describen la posición angular, velocidad angular y aceleración angular en función del tiempo y las variables conocidas. La evaluación numérica de estas mostró resultados acordes con las observaciones experimentales.

References

[1] F. Beer, R. Johnston, and P. Comwell, “Mecanica vectorial para ingenieros. dinamica”, 2007.

[2] A. Poznyak, “Modelado matematico de los sistemas mecánicos, eléctricos y electromecánicos”, 2005.

[3] T. E. Elaikh, H. J. Abed, K. M. Abed, S. M. Swadi et al., “Vibration and kinematic analysis of scara robot structure”, Diyala Journal of Engineering Sciences, vol. 6, no. 3, pp. 127–143, 2013.

[4] J. Duarte, G. E. Valencia, and L. G. Obrego´n, “Application of lagrange equations in the analysis of slidercrank mechanisms”, 2018.

[5] B. P. Patel and J. Prajapati, “Dynamics of mini hy- draulic backhoe excavator: A lagrange-euler (le) approach” Int J Mech Aerospace Ind Mechatron Manuf Eng, vol. 8, no. 1, pp. 202–211, 2014.

[6] A. Sa´enz, V. Santiba´n˜ez, and E. Bugarin, “Modelado cinema´tico y dina´mico de un robot mo´vil omnidireccional de 4 ruedas considerando dina´mica de actuadores”, AMRob Journal, Robotics: Theory and Appli- cations, vol. 4, pp. 1–6, 2016.

[7] F. Aggogeri, A. Borboni, A. Merlo, N. Pellegrini, and R. Ricatto, “Vibration damping analysis of lightweight structures in machine tools”, Materials, vol. 10, no. 3, p. 297, 2017.

[8] R. Sakhapov, R. Nikolaeva, M. Gatiyatullin, and M. Makhmutov, “Modeling the dynamics of the chas sis of construction machines”, in Journal of Physics: Conference Series, vol. 738, p. 012119, IOP Publishing, 2016.

[9] J. M. Cervantes, N. C. Gutie´rrez, E. M. Sa´nchez, and R. V. D´ıaz, “Aplicacio´n mo´vil para el control de un brazo robot”, Revista Iberoamericana de Produccio´n Acade´mica y Gestio´n Educativa, vol. 3, no. 5, 2016.

[10] Y. A. Caicedo Amaranto et al., Implementacio´n del modelo cinema´tico y dina´mico y control de movimiento de un mecanismo planar 2R con componentes ela´sticos en las articulaciones. PhD thesis, Universidad Nacional de Colombia-Sede Bogota.

[11] E. Cardoso, A. Ferna´ndez, S. A. Marrero Osorio, and P. F. Guardado, “Modelos cinema´tico y dina´mico de un robot bípedo de doce grados de libertad internos”, RIELAC (Revista Ing. Electro´nica, Automa´tica y Comu´n), vol. 38, no. 3, pp. 56–75, 2017.

[12] D. A. Sinchi Torres, “Disen˜o y construccio´n de un tobillo robo´tico para asistencia en el proceso de rehabilitacio´n”, B.S. thesis, 2018.

[13] O. D. M. Giraldo, J. G. V. Herna´ndez, and D. G. Buitrago, “Control global del pe´ndulo rotacional invertido empleando modelos de energ´ıa” Scientia et technica, vol. 1, no. 52, pp. 16–25, 2012.

[14] A. B. Cantillo, J. R. Charris, J. S. Rodríguez, J. D. Gonza´lez, E. Y. Rodr´ıguez, and J. R. Mckinley, “Modelado dina´mico del manipulador serial mitsubishi move- master rv-m1 usando solidworks”, Revista UIS Ingenierías, vol. 15, no. 2, pp. 49–62, 2016.

[15] D. Marcal De Queiroz, L. Z. Leyva Rafull, and C. M. Alves de Souza, “Simulac¸a˜o do comportamento dinaˆmico de uma colhedora”, Revista Eng. na Agric, volume=13, number=4, pages=247–255, year=2014.

[16] F. Puignau, “Modelado dina´mico de un veh´ıculo auto´nomo articulado todoterreno”, 2017.

[17] J. S. Duran, C. Pen˜a, and O. Gualdron, “Disen˜o de un sistema robotizado de clasificacio´n de brevas con fines acade´micos”, Revista Electro´nica Redes de Ingenier´ıa, vol. 4, no. 2, 2013.

[18] O. Gonza´lez, Modelacio´n de la Compactacio´n Provocada por el Tra´fico de Neuma´ticos de los Veh´ıculos Agrícolas en Suelos en Condiciones de Laboratorio, 209pp. PhD thesis, Tesis (en opcio´n al grado cient´ıfico de Doctor en Ciencias Te´cnicas, 2011.

[19] F. R. C. Aguayo and J. H. Aguirre, “Disen˜o de un prototipo de robot mo´vil para granjas av´ıcolas”.

[20] A. M. Rodr´ıguez, P. V. Herna´ndez, J. D. Sua´rez, Y. M. Padin, and D. V. Riscart, “Modelo matema´tico racional para el ca´lculo de la potencia consumida en moli- nos forrajeros de tambor”, Revista Ciencias Te´cnicas Agropecuarias, vol. 13, no. 4, 2004.

[21] L. Cortazar-Figueroa, R. Mele´ndez-Pe´rez, and D. Oliver-Herna´ndez,“Consumo de energ´ıa y distribucio´n de taman˜o de part´ıcula en la molienda de canela (cinnamomum zeylanicum) y pimienta negra (piper nigrum l)”, Revista mexicana de ingeniería química, vol. 7, no. 2, pp. 123–130, 2008.

[22] J. S. P. de Corcho Fuentes and F. G. Pegna, “Modelo matema´tico para la demanda de potencia de un aparato de corte de eje vertical para trituracio´n de rastrojos”, Ingenier´ıa e Investigacio´n, vol. 28, no. 3, pp. 122–125, 2008.

Downloads

Download data is not yet available.

Cited by