This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.
Therefore, the journal invokes the Creative Commons 4.0
License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.
Abstract
This article shows a review of the different waste from the process and consumption coffee, used as adsorbent material in the biosorption of the heavy metal of aqueous solutions. In the first instance, some peculiarities of biosorption are outlined, such as the capturing pollutants mechanisms, kind of adsorbent materials including those from coffee, as well as the variables that control the process. In a second instance, different investigations are carried out in relation to biosorption, in which chemical kinetics was developed to assessment of heavy metals removal rates, and adsorption isotherms to determine adsorption rates or capacities with thermally or chemically modified coffee waste. It can then be noted that many authors have found competitive advantages over the use of waste such as pulp, husks, mucilage, spend grain, among others, compared to conventional adsorbents, since their physicochemical properties make them excellent ion exchangers with metals heavy, are of high abundance due to the agricultural vocation of our country and the high coffee consumption that is presented nationally and internationally, in addition to its low cost and ease in handling and treatment, concluding then that these materials present a future promising in the treatment of liquid effluents with heavy metals.
Keywords:
References
[2] M. Lucia Pinzón-Bedoya, L. Estella, and V. Villamizar, “Modelamiento de la cinética de bioadsorción de Cr (III) usando cáscara de naranja,” Año, vol. 76, pp. 95–106, 2009.
[3] M. G. Valladares-Cisneros, C. Valerio Cárdenas, P. de la Cruz Burelo, and R. M. Melgoza Alemán, “Adsorbentes no-convencionales, alternativas sustentables para el tratamiento de aguas residuales,” Rev. Ing. Univ. Medellín, vol. 16, no. 31, pp. 55–73, 2017.
[4] J. Fernandez, Energías renovables para todos: Biomasa, vol. Biomasa. 2004.
[5] L. Sala, S. García, J. González, M. Fascaroli, and S. Bellú, “Biosorción para la eliminación de metales pesados en aguas de desecho,” An. la Real Soc. Española Química, no. 2, pp. 114–120, 2010.
[6] B. H. Dorian, “Bioadsorción De Metales Pesados Mediante El Uso De Biomasa Bacteriana Aislada De Jales Mineros,” p. 108, 2008.
[7] I. de la C. Alomá-Vicente, G. Blázquez-García, M. Calero-de-Hoces, M. Á. Martín-Lara, I. L. Rodríguez-Rico, and A. Ronda-Gálvez, “Panorama general en torno a la contaminación del agua por níquel. La biosorción como tecnología de tratamiento,” Rev. Cuba. Química, vol. XXV, no. 3, pp. 266–280, 2013.
[8] Café de Colombia, “Historia del Café,” 2010. [Online]. Available: http://www.cafedecolombia.com/particulares/es/sobre_el_cafe/el_cafe/el_cafe/.
[9] L. G. Elías, “Composición Química de la Pulpa de café y otros Subproductos,” Cent. Int. Investig. para el Desarro., 1978.
[10] L. V. Peñaranda, S. P. Montenegro, and P. A. Giraldo, “Exploitation of agroindustrial waste in Colombia,” Rev. Investig. Agrar. y Ambient., vol. 8, no. 2, pp. 141–150, 2018.
[11] M. A. Puertas-Mejía, P. Villegas-Guzmán, and B. Alberto Rojano, “Borra de café colombiano (Coffea arabica) como fuente potencial de sustancias con capacidad antirradicales libres in vitro,” Rev. Cuba. Plantas Med., vol. 18, pp. 469–478, 2013.
[12] G. Alvardo Soto, Melvin; Rojas Cubero, El cultivo y beneficiado del café. 1994.
[13] V. Gómez, J. Velasquez, and G. Quintana, “Lignina como adsorbente de metales pesados,” Rev. Investig. Apl., vol. 7, no. 2, pp. 74–87, 2013.
[14] P. Prinsen, “Composición química de diversos materiales lignocelulósicos de interés industrial y análisis estructural de sus ligninas,” 2010.
[15] G. Mejía Sandoval, “Aproximación teórica a la biosorción de metales pesados por medio de microorganismos,” Rev. CES Med. Vet. y Zootec., vol. 1, no. 1, pp. 77–99, Nov. 2006.
[16] A. A. Piedra, A. A. Obando, and L. G. R. Esquivel, “Selección teórica de adsorbentes potenciales naturales de bajo costo para la remoción de arsénico en el agua de consumo humano en Costa Rica,” Tecnol. en Marcha, vol. 30, no. 3, pp. 23–34, 2016.
[17] S. Rangabhashiyam, E. Suganya, N. Selvaraju, and L. A. Varghese, “Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants.,” World J. Microbiol. Biotechnol., vol. 30, no. 6, pp. 1669–1689, Jun. 2014.
[18] E. A. Suazo-Madrid, L. Morales-Barrera, M. del C. Cristiani-Urbina, and E. Cristiani-Urbina, “Efecto del pH sobre la biosorción de níquel (II) por Saccharomyces cerevisiae var. ellipsoideus,” Rev. CENIC. Ciencias Químicas, vol. 41, pp. 1–12.
[19] T. G. P. Vásquez, A. E. C. Botero, L. M. S. de Mesquita, and M. L. Torem, “Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain,” Miner. Eng., vol. 20, no. 9, pp. 939–944, Aug. 2007.
[20] O. F. H. Cobos, L. C. F. García, and J. F. A. Londoño, “Estudio de la biosorción de cromo con hoja de café,” Ing. e Investig., vol. 29, no. 2, pp. 59–64, 2009.
[21] M. E. Pacheco Tanaka, J. P. Pimentel Frisancho, and W. F. Roque Villanueva, “Cinética de la bioadsorción de iones cadmio (II) y plomo (II) de soluciones acuosas por biomasa residual de café (Coffea arabica L.) ,” Revista de la Sociedad Química del Perú , vol. 76. scielo , pp. 279–292, 2010.
[22] W. T. (Universiti P. M. Tan Serdang, Selangor. Chemistry Dept.), “Copper (II) adsorption by waste tea leaves and coffee powder,” Pertanika (Malaysia), vol. v. 8.
[23] S. K. Mehta and J. P. Gaur, “Use of Algae for Removing Heavy Metal Ions From Wastewater: Progress and Prospects,” Crit. Rev. Biotechnol., vol. 25, no. 3, pp. 113–152, Jan. 2005.
[24] Jaime Benítez, Principles and modern application of mass transfer operations, Second edi. John Wiley & Sons, Inc, 2009.
[25] M. Matouq, N. Jildeh, M. Qtaishat, M. Hindiyeh, and M. Q. Al Syouf, “The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods,” J. Environ. Chem. Eng., vol. 3, no. 2, pp. 775–784, Jun. 2015.
[26] B. Kızılkaya, G. Türker, R. Akgül, and F. Doğan, “Comparative Study of Biosorption of Heavy Metals Using Living Green Algae Scenedesmus quadricauda and Neochloris pseudoalveolaris: Equilibrium and Kinetics,” J. Dispers. Sci. Technol., vol. 33, no. 3, pp. 410–419, Mar. 2012.
[27] H. D. Utomo and K. A. Hunter, “Adsorption of heavy metals by exhausted coffee grounds as a potential treatment method for waste waters,” e-Journal Surf. Sci. Nanotechnol., vol. 4, pp. 504–506, 2006.
[28] E. Yalcin, K. Cavusoglu, M. Maras, and M. Biyikoglu, “Biosorption of lead(II) and copper(II) metal ions on Cladophora glomerata (L.) Kutz. (Chlorophyta) algae: Effect of algal surface modification,” Acta Chimica Slovenica, vol. 55, no. 1. pp. 228–232, 2008.
[29] S. T. Ramesh, R. Gandhimathi, J. Hamoneth Joesun, and P. V. Nidheesh, “Novel Agricultural Waste Adsorbent, Cyperus rotundus, for Removal of Heavy Metal Mixtures from Aqueous Solutions,” Environ. Eng. Sci., vol. 30, no. 2, pp. 74–81, Jan. 2013.
[30] B. George, J. I. Nirmal Kumar, R. N. Kumar, and P. R. Sajish, “Biosorption Potentiality of Living Aspergillus niger Tiegh in Removing Heavy Metal from Aqueous Solution,” Bioremediat. J., vol. 16, no. 4, pp. 195–203, Dec. 2012.
[31] V. O. Arief, K. Trilestari, J. Sunarso, N. Indraswati, and S. Ismadji, “Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies,” CLEAN – Soil, Air, Water, vol. 36, no. 12, pp. 937–962, 2008.
[32] J. Suarez, “Aprovechamiento de los residuos sólidos provenientes del beneficio de café, en el municipio de Betania Antioquia: Usos y aplicaciones. Monográfia de especialización. Corporación Universitaria la Sallista.,” p. 55, 2012.
[33] E. Bustamante Alcántara, “Adsorción De Metales Pesados En Residuos De Café Modificados Químicamente,” 2011.
[34] M. Hernández Rodiguez et al., “Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 1161–1170, 2018.
[35] W. Cherdchoo, S. Nithettham, and J. Charoenpanich, “Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea,” Chemosphere, 2019.
[36] A. Dutta, Y. Diao, R. Jain, E. R. Rene, and S. Dutta, “Adsorption of Cadmium from Aqueous Solutions onto Coffee Grounds and Wheat Straw: Equilibrium and Kinetic Study,” J. Environ. Eng. (United States), vol. 142, no. 9, Sep. 2016.
[37] L. J. Barón Pacheco, Evaluación de la cascarilla de café como material adsorbente para la remoción de iones plomo Pb +2 presente en soluciones acuosas. 2014.
[38] B. G. Alhogbi, “Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions,” Sustain. Chem. Pharm., vol. 6, pp. 21–25, 2017.
[39] N. M. Mora Alvarez, J. M. Pastrana, Y. Lagos, and J. J. Lozada, “Evaluation of mercury (Hg2+) adsorption capacity using exhausted coffee waste,” Elsevier, 2018.
[40] M. H. Park, S. Jeong, G. Lee, H. Park, and J. Y. Kim, “Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V)by nanoscale zero-valent iron supported on exhausted coffee grounds,” Waste Manag., 2019.
[41] N. Azouaou, Z. Sadaoui, A. Djaafri, and H. Mokaddem, “Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics,” J. Hazard. Mater., vol. 184, no. 1, pp. 126–134, 2010.
[42] K. Kaikake, K. Hoaki, H. Sunada, R. P. Dhakal, and Y. Baba, “Removal characteristics of metal ions using degreased coffee beans: Adsorption equilibrium of cadmium (II),” Bioresour. Technol., vol. 98, no. 15, pp. 2787–2791, 2007.
[43] S. Berhe, D. Ayele, A. Tadesse, and A. Mulu, “Adsorption Efficiency of Coffee Husk for Removal of Lead ( II ) from Industrial Effluents : Equilibrium and kinetic study,” Int. J. Sci. Res. Publ., 2015.
[44] W. E. Oliveira, A. S. Franca, L. S. Oliveira, and S. D. Rocha, “Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions,” J. Hazard. Mater., vol. 152, no. 3, pp. 1073–1081, 2008.
[45] P. Cubides Guerrero and J. H. Ramírez Franco, “Adsorción de Cr VI sobre residuos de café,” Rev. Mutis, vol. 4, no. 2, pp. 18–25, 2014.
[46] J. Velásquez J., G. Quintana, C. Gómez, and Y. Echavarría, “Adsorción de NI(II) en carbón activado de cascarilla de café,” Rev. Investig. Apl., vol. 2, no. 1, 2008.
[47] E. Bustamante-Alcántara, “Adsorción de metales pesados en resiudos de café modificados químicamente,” Universidad Autónoma de Nuevo León, 2011.
[48] N. E. Dávila-Guzmán et al., “Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism,” CLEAN – Soil, Air, Water, vol. 41, no. 6, pp. 557–564, 2013.
[49] M. Minamisawa, H. Minamisawa, S. Yoshida, and N. Takai, “Adsorption Behavior of Heavy Metals on Biomaterials,” J. Agric. Food Chem., vol. 52, no. 18, pp. 5606–5611, Sep. 2004.
[50] N. T. M. Minamisawa, S. Nakajima, H. Minamisawa, S. Yoshida, “Removal of Copper(II) and Cadmium(II) in Water by Use of Roasted Coffee Beans,” Nippon KAGAKU KAISHI, vol. 2002, no. 3, pp. 459–461, 2002.
[51] L. K. Lagos Araujo, “Bioadsorción de cromo con borra de café en efluentes de una industra curtiembre local,” 2016.
[52] J. C. Pabon Patiño and W. A. Rosas Arevalo, “Determinación de la eficiencia de adsorción de la cáscara de café y cáscara de papa en la remoción de Cr (VI) presente en aguas residuales provenientes de una curtiembre de Pandiaco.,” 2018.
[53] V. J. M. Diaz, Aprovechamiento de los residuos de café (borra) con cáscara de cacao como base de un filtro para reducir plomo de agua contaminada del río chirinos, San Ignacio-Cajamarca, 2018. Lima, Perú, 2018.
[54] E. Asnake, A. Haftu, and B. Abiyu, “Adsorptive Removal of Pb(II) and Cr(VI) from Wastewater using Acid untreated and Acid treated Coffee Husks: Comparative study,” Int. J. Res. Chem. Env., 2014.
[55] C. H. Wu, C. Y. Kuo, and S. S. Guan, “Adsorption kinetics of lead and zinc ions by coffee residues,” Polish J. Environ. Stud., 2016.
[56] G. Z. Kyzas, “Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions,” Materials (Basel)., vol. 5, no. 10, pp. 1826–1840, Oct. 2012.
[57] E. Carvajal -Flórez, “Modelo de sorción para la remoción de cobre y plomo de lixiviados de rellenos sanitarios,” 2019.
[58] D. Imessaoudene, S. Hanini, and A. Bouzidi, “Biosorption of strontium from aqueous solutions onto spent coffee grounds,” J. Radioanal. Nucl. Chem., 2013.