Ingenierías USBMed
Dimensions

PlumX

How to Cite
Gaviria, S. J., Ramirez, A. F., & Rivera, L. M. (2022). Validation of a Wireless device for the control of kinematic variables in sports performance. Ingenierías USBmed, 12(1). https://doi.org/10.21500/20275846.4806 (Original work published May 11, 2021)
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

Validate a low-cost Wireless for the census of acceleration in sports activities. For validation, a linear transducer (T-Force System Ergotech, Murcia, Spain) and videography analysis (SkillSpector version 1.3.2) were used. Participants developed the flat bench press in a SMITH machine. The protocol consisted of a repetition of flat bench press with a constant load (18 kg). Recovery between repetition was 15 seconds. In total 5 subjects developed 84 repetitions. The data were characterized by a minor difference between the values of the mean of the Wireless vs T-Force device (0.18) in contrast to Wireless vs. Videography (0.46). The results show that there are no statistically significant differences in the acceleration of displacement between the Wireless device, linear transducer and videography analysis; however, the reported Pearson correlation levels showed a moderate association (p <0.05) for the two tests. The assumption of independence of the errors was proven by the Durbin-Watson test. The results suggest that, although there were no high associations between the devices, the economic component of the production of the Wireless device makes it a viable alternative for the control and measurement of acceleration in sports.

Keywords:

References

1) ALTAIR. (2018). Innovation Intelligence. Disponible en: https://www.carriots.com/

2) Aprendiendo Arduino. (2018). Aprendiendo a manejar Arduino en profundidad. Disponible en: https://www.aprendiendoarduino.com/2018/03/07/arduino-y-lorawan/

3) Balsalobre, C., Marchante, D., Muñoz, M. y Jiménez, L. (2017). Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1-RM on the bench press exercise. J Sports Sci, Vol 36, número 1, pp 64-70.

4) Callaway, A., Cobb, J., y Jones, I. (2009). A comparison of video of accelerometer based approaches applied to performance monitoring in swimming. Internarional journal of Sport Science y Coaching, Vol 4, número 1, pp 139-153

5) Chen, H., Chou, Ch,. Fu, T., Lee, S., y Lin, B. (2012). Recognizing tactic patterns in broadcast basketball video using player trajectory. Journal of Visual Communication and Image Representation, Vol 23, número 6, pp 932-947.

6) Dorrell, H., Moore, J., Simit., y Gee T.(2019). Validity and reliability of a linear positional transducer across commonly practised resistance training exercises. Revista Pubmed, Vol 37, número 1, pp 67-73.

7) Eggers, T., Massard, T., Clothier, P., y Lovell, R. (2018). Measuring Vertical Stiffness in Sport With Accelerometers: Exercise Caution!. The Journal of Strength y Conditioning Research, Vol 32, número 7, pp 1919-1922.

8) Espinosa, H., Lee, J., y James, D. (2015). The inertial sensor: a base platform for wider adoption in sports science applications. Journal of Fitness Research, Vol 4, número 1, pp 13-20

9) Ganzevles, S., Vullings, R., Beek, P., Daanen, H., y Truijens, M. (2017). Using Tri-Axial Accelerometry in Daily Elite Swim Training Practice. Sensor, Vol 17, número 5, pp 1-14

10) Gómez, P., Trigo, M., Cabello. D., y Puga, E. (2012). Confiabilidad entre instrumentos (T-Force® y Myotest®) en la valoración de la fuerza. Revista Internacional de ciencias del deporte, Vol 8, número 27, pp 20-30.

11) González, J., y Sánchez, L. (2010). Movement velocity as a measure of loading intensity in resistance training. International journal of sports medicine, Vol 31, número 05, pp 347-352.

12) Grigore, V., Mitrache, G., Predoiu, R., y Roşca, R. (2012). Characteristic of instrumental movements–eye hand coordination in sports. Procedia-Social and Behavioral Sciences, Vol 33, pp 193-197.

13) Havens, K., Cohen, S., Pratt, K., y Sigward, S. (2018). Clinical Biomechanics Accelerations from wearable accelerometers reflect knee loading during running after anterior cruciate ligament reconstruction. Clinical Biomechanics, Vol 58, pp 57–61.

14) Higgins, W. (1975). A Comparison of Complementary and Kalman Filtering. IEEE Transactions on Aerospace and Electronic Systems, Vol 11, número 3, pp 321 - 325.

15) Karsten, M., Ribeiro, G., Esquivel, M., y Matte, D. (2018). The effects of inspiratory muscle training with linear workload devices on the sports performance and cardiopulmonary function of athletes: A systematic review and meta-analysis. Physical Therapy in Sport, Vol 34, pp 92-104

16) Kenneally, C., Serpell, B, y Spratford, W. (2018). Are accelerometers a valid tool for measuring overground sprinting symmetry?. International Journal of Sports Science y Coaching, Vol 13, número 2, pp 270-277.

17) Kim, S., y Nussbaum, A., (2013). Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks. Pubmed, Vol 56, número 2, pp 314-326

18) Kos, A., Milutinovic, V., y Umek, A. (2018). Challenges in wireless communication for connected sensors and wearable devices used in sport biofeedback applications. Future generation computer systems, Vol 92, pp 582-592.

19) Koutras, G., Bernard, M., Terzidis, I., Papadopoulos, P., Georgoulis, A., y Pappas, E. (2016). Comparison of knee flexion isokinetic deficits between seated and prone positions after ACL reconstruction with hamstrings graft: Implications for rehabilitation and return to sports decisions. Journal of science and medicine in sport, Vol 19, número 7, pp 559-562.

20) Lachaine, R., Muller, H., Larue, C., y Plamondon, C. (2019). Validation of a low-cost inertial motion capture system for whole-body motion analysis. Journal of biomechanics. Disponible en: https://doi.org/10.1016/j.jbiomech.2019.109520

21) Lu, Y., Wang, H., y Liu, Sh. (2018). An integrated accelerometer for dynamic motion systems. Revista Measurement, Vol 125, pp 471-475.

22) Martinez, A. (2009). Bioestadisca amigable. España: Díaz de Santos.

23) Neville, J., Wixted, A., Rowlands, D., y James, D. (2010, December). Accelerometers: An underutilized resource in sports monitoring. In 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing IEEE. Disponible en: https://ieeexplore.ieee.org/document/5706766

24) Peña, G., Elvar, H., Juan, R., Aguilera, J., Arenas, A., y Pérez, C. (2017). Dispositivos para la Medición de la Velocidad de Ejecución en el Entrenamiento de la Fuerza: ¿Todos Valen para lo Mismo?. International Journal of Physical Exercise and Health Science for Trainers. Disponible en: https://g-se.com/dispositivos-para-la-medicion-de-la-velocidad-de-ejecucion-en-el-entrenamiento-de-la-fuerza-todos-valen-para-lo-mismo-2272-sa-5590fae089d4bc

25) Raper, D., Witchalls, J., Philips, E., Knight, E., Drew, M., y Waddington, G. (2018). Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates. Journal of science and medicine in sport, Vol 21, número 1, pp 84-88.

26) Safont, B., y De Blas, X. (2010). Validez de un nuevo dispositivo para medir la velocidad de desplazamiento de un press de banca utilizando Chronojump. Revista Digital - Buenos Aires, Vol 14, número 141.

27) Sánchez, N., Velásquez, J., Villa, J., y Marín, J. (2007). SpeedMed: device for measuring velocity in track sports. Revista Ingeniería Biomédica, Vol 1, número 1, pp 33-37.

28) Saravia, A., Tagliaferri, F., Fiadino, S., y Airoldi, A. (2013). Diseño e implementación de sistemas embebidos con PIC. Tomo II Aplicaciones Avanzadas y Sistemas de control. Buenos Aires: Mc electronics.

29) Stamm, A. (2018). Investigating Stroke Length and Symmetry in Freestyle Swimming Using Inertial Sensors. In Multidisciplinary Digital Publishing Institute Proceedings, Vol 2, número 6, pp 284.

30) Staunton, C., Wundersitz, D., Gordon, B., y Kingsley, G. (2017). Construct Validity of Accelerometry-Derived Force to Quantify Basketball Movement Patterns. Pubmed, Vol 38, número 14, pp 1090-1096

31) Walker, O. (2017). Velocity based training is simply a method of training which uses a piece of technology to track the movement speed of the exercise. Revista Science for sport. Disponible en: https://www.scienceforsport.com/velocity-based-training/#toggle-id-1

Downloads

Download data is not yet available.

Cited by