This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.
Therefore, the journal invokes the Creative Commons 4.0
License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.
Abstract
Alternatives had been proposed for the management and treatment of coffee residual benefits, but the complexity, cost, and the lack of implementation from the producers of the beans or effluents does not fulfill the requirements of the country normativity. The objective for the investigation was to establish the evapotranspiration (ET) and crop coefficients (Kc) of three plant species natives of the coffee region: Arundo donax, Heliconia fire opal and, Brachiaria mutica to be used in zero discharge constructed wetlands as an alternative of treatment of the wastewater coffee production. Three units were constructed where the species were planted. Once the species were established the measurements of daily water consumption of each wetland started and the calculation of ET and the evapotranspiration of reference ET0 using the Hargraves formula. Arundo donax was the species with the highest ET with an average of 8.6±4.2 mm/d, achieving an increment of 83% in comparison with the ET0, which was 4.7±0.5 mm/d. The average Kc of the cane was 1.8±0.8 being the highest.
References
[2] N. Rodríguez Valencia, “Estudio de un biosistema integrado para el pos-tratamiento de las aguas residuales del café utilizando macrófitas acuáticas,” Tesis Doctoral, Universidad Politécnica de Valencia, 2009. [Online]. Available: http://dspace.upv.es/xmlui/handle/10251/4342
[3] M. M. Kondo, R. G. M. Moraes, S. J. de Andrade, and M. R. A. da Silva, “Fenton and photo-Fenton process to the wastewater treatment of coffee fruits,” Coffee Sci, vol. 9, no. 4, pp. 506–515, 2014.
[4] D. L. Teixeira, A. T. de Matos, and M. Rossmann, “Folic acid in treatment of wastewater in coffee via wet processing,” Coffee Sci, vol. 7, no. 1, pp. 91–98, 2012.
[5] A. Cruz-Salomón, E. Ríos-Valdovinos, F. Pola-Albores, S. Lagunas-Rivera, R. Meza-Gordillo, and V. M. Ruíz-Valdiviezo, “Evaluation of hydraulic retention time on treatment of coffee processing wastewater (CPWW) in EGSB bioreactor,” Sustainability (Switzerland), vol. 10, no. 1, 2017, doi: 10.3390/su10010083.
[6] R. Fia, A. T. De Matos, M. P. De Matos, E. C. Abreu, and F. R. L. Fia, “Treatment of the wastewater of coffee fruit processing in anaerobic filter system followed by constructed wetland system: I - Removal of organic material [Tratamento das águas do processamento dos frutos do cafeeiro em filtro anaeróbio seguido por sistema,” Engenharia Agricola, vol. 30, no. 6, pp. 1191–1202, 2010, doi: 10.1590/S0100-69162010000600019.
[7] P. Gregersen and H. Brix, “Zero-discharge of nutrients and water in a willow dominated constructed wetland,” in Water Science and Technology, Dec. 2001, vol. 44, no. 11–12, pp. 407–412. doi: 10.2166/wst.2001.0859.
[8] W. Halicki and K. Kita, “Implementation of improved wetland systems as a ‘zero-discharge-technology’ in Poland,” Water and Environment Journal, vol. 31, no. 2, pp. 168–175, 2017, doi: 10.1111/wej.12230.
[9] T. Tuttolomondo, M. Licata, C. Leto, R. Leone, and S. La Bella, “Effect of plant species on water balance in a pilot-scale horizontal subsurface flow constructed wetland planted with Arundo donax L. and Cyperus alternifolius L. - Two-year tests in a Mediterranean environment in the West of Sicily (Italy),” Ecological Engineering, vol. 74, pp. 79–92, 2015, doi: 10.1016/j.ecoleng.2014.10.020.
[10] J. Z. Drexler, R. L. Snyder, D. Spano, and K. T. Paw U, “A review of models and micrometeorological methods used to estimate wetland evapotranspiration,” Hydrological Processes, vol. 18, no. 11, pp. 2071–2101, Aug. 2004, doi: 10.1002/hyp.1462.
[11] J. P. Marín, A. Acosta, K. Sanabria, and L. Gonzalez, “Evaluación de la calidad y oferta del recurso hídrico en las fuentes de abastecimiento de la Hacienda Majavita,” Socorro, Santander, 2019.
[12] H. A. Vega Serrano, “Evapotranspiración en humedales con pasto elefante (Pennisetum purpureum) como tratamiento de aguas residuales del beneficio del café (escala piloto).,” El Centauro., vol. 10, pp. 41–52, 2018.
[13] M. P. Muelas, “Desarrollo de bioproductos de Arundo donax L. orientados al secuestro de carbono y reducción de la pérdida de biodiversidad,” vol. 1, no. 1, 2015.
[14] I. Lewandowski, J. M. O. Scurlock, E. Lindvall, and M. Christou, “The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe,” Biomass and Bioenergy, vol. 25, no. 4, pp. 335–361, Oct. 2003, doi: 10.1016/S0961-9534(03)00030-8.
[15] M. Czakó and L. Márton, “Subtropical and tropical reeds for biomass,” Issues in Environmental Science and Technology, pp. 322–340, Dec. 2010, doi: 10.1039/9781849732048-00322.
[16] L. G. Angelini, L. Ceccarini, and E. Bonari, “Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practices,” European Journal of Agronomy, vol. 22, no. 4, pp. 375–389, May 2005, doi: 10.1016/j.eja.2004.05.004.
[17] H. Leal Ramírez, “Plantas exóticas : heliconias comunidad Bogotá Cachivera; Mitú, Vaupés,” Bogotá, 2012.
[18] M. Douglas and R. A. O’Connor, “Effects of the exotic macrophyte, para grass (Urochloamutica), on benthic and epiphytic macro invertebrates of a tropical floodplain.,” Freshwater Biology., vol. 48, no. 6, pp. 962–971, 2003.
[19] K. Langeland and B. Craddock, Identification and biology of non-native plants in Florida’s natural areas. University of Florida, 1998.
[20] V. T. Thanh Ho et al., “Surveying the growth and wastewater treatment ability of Para grass (Brachiaria Mutica) vegetation in the stabilization ponds,” ARPN Journal of Engineering and Applied Sciences, vol. 13, no. 19, pp. 8044–8048, 2018.
[21] G. López A., J. Nuñez D., L. Aguirre T., and E. Flores M., “Dinámica de la producción primaria y valor nutritivo de tres gramíneas tropicales (Melinis minutiflora, Setaria sphacelata y Brachiaria mutica) en tres estados fenológicos,” Revista de Investigaciones Veterinarias del Perú, vol. 29, no. 2, p. 396, 2018, doi: 10.15381/rivep.v29i2.14494.
[22] J. A. Villegas and B. E. Torres, “Evapotranspiracion.,” Serie Didactica, Facultad de Agronomia y Zootecnica, Universidad Nacional de Tucuman, vol. 45, 1977.
[23] J. Sánchez San Román, “Cálculo de la Evapotranspiración Potencial mediante la fórmula de Hargreaves,” 2010.
[24] W. Hines and D. Montgomery, Probabilidad y estadística para ingeniería y administración, 3rd ed. México, 1996.
[25] F. Moreno, J. Lara-Borrero, L. Rojas, and I. Vera-Puerto, “Analysis of Salix humboldtiana to be used as the plant species in evapotranspirative willow systems in Latin American highland climate conditions,” Journal of Environmental Science and Health, Part A, vol. 54, no. 13, pp. 1302–1310, Nov. 2019, doi: 10.1080/10934529.2019.1642695.
[26] Cenicafé, “Boletín diario - Agroclima,” 2020. https://agroclima.cenicafe.org/web/guest/boletin_diario (accessed Sep. 05, 2020).
[27] Google Earth, “Google Earth.” 2020.
[28] J. Piouceau, F. Panfili, G. Bois, M. Anastase, L. Dufossé, and V. Arfi, “Actual evapotranspiration and crop coefficients for five species of three-year-old bamboo plants under a tropical climate,” Agricultural Water Management, vol. 137, pp. 15–22, 2014, doi: 10.1016/j.agwat.2014.02.004.
[29] L. L. Handley and P. C. Ekern, “EFFLUENT IRRIGATION OF PARA GRASS: WATER, NITROGEN, AND BIOMASS BUDGETS,” JAWRA Journal of the American Water Resources Association, vol. 20, no. 5, pp. 669–677, 1984, doi: 10.1111/j.1752-1688.1984.tb04749.x.
[30] Juliana. Valencia Quintero, “Evaluación de humedales evaporativos para el post tratamiento de aguas residuales domésticas,” Universidad Tecnológica de Pereira, 2014.
[31] F. Triana, N. Nassi o Di Nasso, G. Ragaglini, N. Roncucci, and E. Bonari, “Evapotranspiration, crop coefficient and water use efficiency of giant reed (Arundo donax L.) and miscanthus (Miscanthus × giganteus Greef et Deu.) in a Mediterranean environment.,” GCB Bioenergy, vol. 7, no. 4, pp. 811–819, Jul. 2015, doi: 10.1111/gcbb.12172.
[32] T. R. Headley, L. Davison, D. O. Huett, and R. Müller, “Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia,” Water Research, vol. 46, no. 2, pp. 345–354, Feb. 2012, doi: 10.1016/J.WATRES.2011.10.042.
[33] M. Borin, M. Milani, M. Salvato, and A. Toscano, “Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in Northern and Southern Italy,” Ecological Engineering, vol. 37, no. 5, pp. 721–728, 2011, doi: 10.1016/j.ecoleng.2010.05.003.
[34] R. H. Kadlec and S. D. Wallace, Treatment Wetlands, 2nd ed. 2009.
[35] S. K. Higuera Infante, “Biofiltro con cascarilla de arroz y pasto vetiver (C. Zizanioides) para el tratamiento del efluente de la PTAR del INPEC – Yopal, Casanare, Colombia,” Revista de Investigación Agraria y Ambiental, vol. 8, no. 1, pp. 107–118, 2017.
[36] A. D. Vera, S. E. Comte, J. R. Guamán, and E. J. Mora, “Calidad del cultivo de maíz en la provincia de Santa Elena: Rendimiento, sanidad y condiciones agroclimáticas,” Revista Venezolana de Gerencia, no. 3, 2020, doi: 10.37960/rvg.v25i3.33376.