Ingenierías USBMed
Dimensions

PlumX

Cómo citar
Niño Rondón, C. V., Puerto López, K. C., Guevara Ibarra, D., & Contreras Gómez, W. A. (2023). Radio Definida por Software: Una mirada a las tendencias y aplicaciones. Ingenierías USBMed, 14(1), 58–69. https://doi.org/10.21500/20275846.6048
Términos de licencia

Esta revista provee acceso libre inmediato a su contenido bajo el principio de hacer disponible gratuitamente las investigaciones al publico y apoyando un mayor intercambio de conocimiento global. 

Por tanto se acoge a la Licencia Creative Commons 4.0 Atribución- no comercial-sin derivadas (by-nc-nd): permite copiar y redistribuir el material en cualquier medio o formato, No se permite un uso comercial de la obra original ni de las posibles obras derivadas,  Si remezcla, tansforma o crea a partir del material, no podrá distribuir el material modificado.
 

Costos de procesamiento y presentación de los artículos

El procesamiento y publicación en Ingenierías USBMed no tiene costo.

Política de acceso abierto

Ingenierías USBMed proporciona un acceso abierto inmediato a su contenido, basado en el principio de ofrecer al público un acceso libre a las investigaciones ayudando a un mayor intercambio global de conocimiento. Por tanto se acoge a la Licencia Creative Commons 4.0 Atribución- no comercial-sin derivadas (by-nc-nd): permite copiar y redistribuir el material en cualquier medio o formato, No se permite un uso comercial de la obra original ni de las posibles obras derivadas,  Si remezcla, tansforma o crea a partir del material, no podrá distribuir el material modificado.

Derechos de Autor (Copyrigt)

La totalidad de los contenidos de Ingenierías USBMed, e-ISSN 2027-5846 están registrados y protegidos por las leyes de protección de la propiedad intelectual. Los derechos de propiedad intelectual de cada artículo son cedidos por sus autores a Ingenierías USBMed. Al someter el manuscrito, y únicamente en caso de ser aceptado para publicación, los autores aceptan que el copyright de su artículo queda transferido a Ingenierías USBMed. No obstante, se consideran todas las solicitudes de autorización por parte de los autores con fines de reproducción de sus artículos. Igualmente, Ingenierías USBMed otorga permiso de acceso para usuarios y bibliotecas. Ingenierías USBMed apoya el libre acceso a la literatura científica dicho copyright pide el respeto de los derechos morales, principalmente el reconocimiento de su autoría y el respeto a la integridad de la obra, evitando dentro de lo posible alteraciones, traducciones o falsificaciones. Al ser Ingenierías USBMed una publicación electrónica de carácter científico que publica trabajos de investigación científica y tecnológica, artículos de reflexión o artículos de revisión, el objetivo prioritario tanto de los los autores como de Ingenierías USBMed es lograr la mayor difusión de los artículos, para lo cual los autores ceden a Ingenierías USBMed sus derechos, únicamente a cambio del reconocimiento intelectual, moral y laboral, al considerarse que es una materia no de ocio o entretenimiento, sino de fuerte interés social, por su carácter científico.

Política Ética

Los autores deben actuar de forma ética en los procesos requeridos para la publicación de sus artículos en Ingenierías USBMed. Para esto, los autores y miembros de la revista se deben acoger a la politica de Ética editorial de la Editorial Bonaventuriana, disponible en el siguiente link: Manual editorial

Responsabilidad de contenidos

El contenido de los artículos publicados por Ingenierías USBMed es de exclusiva responsabilidad del (os) autor(es) y no necesariamente refleja el pensamiento del comité editorial y científico de la revista Ingenierías USBMed. Los textos pueden reproducirse total o parcialmente citando la fuente.

Resumen

El concepto de radio definida por software ha tomado relevancia en los últimos años dada su funcionalidad para el control de funciones principalmente en dispositivos de comunicaciones y sensores tipo radar. Su rápida expansión se debe a la facilidad de implementación tanto a nivel amateur, a nivel profesiones como a nivel didáctico para la enseñanza. En este documento se presenta un análisis de tendencias de la radio definida por software con clasificación por continentes, donde la información de datos bibliográficas de alto impacto, se somete a tres filtros de palabras, y se incluyen documentos comprendidos en la ventana de 2015 a 2022. El análisis de las tendencias y aplicaciones de la radio definida por software en los continentes muestra el uso de esta tecnología en procesos de enseñanza, aplicaciones biomédicas y de sensórica, empleando herramientas tanto de software licenciado como herramientas de código abierto, y con énfasis en hacia el uso de técnicas de aprendizaje computacional.

Palabras clave:

Citas

[1] R. G. Machado and A. M. Wyglinski, “Software-defined radio: Bridging the analog-digital divide,” Proc. IEEE, vol. 103, no. 3, pp. 409–423, Mar. 2015.
[2] J. Jagannath et al., “Artificial neural network based automatic modulation classification over a software defined radio testbed,” in IEEE International Conference on Communications, 2018, vol. 2018- May, pp. 1–6.
[3] G. Kakkavas, K. Tsitseklis, V. Karyotis, and S. Papavassiliou, “A Software Defined Radio Cross-Layer Resource Allocation Approach for Cognitive Radio Networks: From Theory to Practice,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 2, pp. 740–755, 2020.
[4] G. Gonzáles Martinez, “Diseño de un sistema de acceso al medio y modulación en banda base utilizando radio definido por software para
comunicación de largo alcance entre boyas,” Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, 2016.
[5] K. Bhusal, “Implementation and Performance Analysis of Long Term Evolution Using Software Defined Radio,” University of Texas at Tyler, 2017.
[6] J. Hernández and S. Castro, “Implementación de un transmisor de ISDB-T abierto bajo el paradigma de radio definida por software,”
Universidad de La República, 2018.
[7] K. Navarro, F. Canto, and H. Poveda, “Software Defined Radio as an Educational Learning Tool in Wireless Communications,” in 16th LACCEI Internation Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and Inclusion,” 2018, no. July 2018, p. 11.
[8] M. W. O’Brien, J. S. Harris, O. Popescu, and Di. C. Popescu, “An Experimental Study of the Transmit Power for a USRP SoftwareDefined Radio,” in 2018 12th International Conference on Communications, COMM 2018 - Proceedings, 2018, pp. 377–380.
[9] R. Akeela and B. Dezfouli, “Software-defined Radios: Architecture, state-of-the-art, and challenges,” Comput. Commun., vol. 128, no.
July, pp. 106–125, 2018.
[10] [10] E. Schmidt, D. Inupakutika, R. Mundlamuri, and D. Akopian, “SDR-Fi: Deep-Learning-Based Indoor Positioning via SoftwareDefined Radio,” IEEE Access, vol. 7, pp. 145784–145797, 2019.
[11] O. López Cabrebra, “Diseño de una Radio Definida por Software,” Universidad Nacional Río Negro, 2019.
[12] J. C. Cruz Sandoval, “Modelo de capa física WLAN utilizando Radio Definido por Software,” Universidad Central Marta Abreu de Las Villas, 2019.
[13] J. M. Navarro Magaldi, “Implementación y verificación de un sistema receptor de comunicaciones basado en software definido por radio,”
Universidad Autónoma de Madrid, 2019.
[14] A. F. Vega León and A. Guamo, “Comunicación Basada en Radio Cognitiva sobre Radio Definido por Software,” Rev. Tecnológica - ESPOL, vol. 32, no. 2, pp. 43–50, 2020.
[15] M. D. Carchi Sañay, “Implementación de prácticas de laboratorio para la materia de comunicación digital utilizando Radio Definida por
Software y GNU Radio,” Escuela Politécnica Nacional, 2020.
[16] L. Hong, “Experience of IoT transceiver with affordable software defined radio platform,” in ASEE Annual Conference and Exposition,
Conference Proceedings, 2020, vol. 2020-June, no. August 2003.
[17] R. Seal and J. Urbina, “GnuRadar: An Open-Source SoftwareDefined Radio Receiver Platform for Radar Applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 35, no. 2, pp. 30–36, 2020.
[18] M. A. Silva Yánez and J. J. Cartegena Izquierdo, “Diseño e implementación de un prototipo de radar de objetivos móviles con radio definido por software y gnuradio,” Universidad Politécnica Salesiana - Sede Guayaquil, 2021.
[19] J. de J. Rugeles Uribe, E. P. Guillen, and L. S. Cardoso, “A technical review of wireless security for the internet of things: Software defined
radio perspective,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no.
7, pp. 4122–4134, 2021.
[20] D. M. Molla, H. Badis, L. George, and M. Berbineau, “Coverage Extension of Software Defined Radio Platforms for 3GPP 4G/5G
Radio Access Networks,” in Proceedings of the 13th IFIP Wireless and Mobile Networking Conference, WMNC 2021, 2021, pp. 55–62.
[21] S. Aghabeiki, C. Hallet, N. E. R. Noutehou, N. Rassem, I. Adjali, and M. Ben Mabrouk, “Machine-learning-based spectrum sensing
enhancement for software-defined radio applications,” in 2021 IEEE Cognitive Communications for Aerospace Applications Workshop, CCAAW 2021, 2021, no. June.
[22] D. F. Sandoval Romero and J. A. Zamora, “Estudio de la Tecnología Radio Definido por Software,” Fundación Universitaria Agustiniana,
2017.
[23] Á. I. Monteros Túqerres, “Diseño y Elaboración de Prácticas de Laboratorio para la Materia de Fundamentos de Comunicaciones usando Radio Definida Por Software,” Escuela Politécnica Nacional, 2019.
[24] J. camilo Sanchez Huertas and S. Romero Avedaño, “Algoritmo de volcado del tráfico de datos para redes inalámbricas sobre una red
definida por software,” Universidad Distrital Francisco José de Caldas, 2019.
[25] G. A. Chica pedraza, D. N. Angulo esguerra, Á. F. Díaz Sánchez, and M. Espinosa Buitrago, “Implementación de estación base GSM recepción de señales LTE aplicando radio definido por software,” Rev. ITECKNE, vol. 17, no. 1, pp. 19–30, 2020.
[26] H. A. Gomez Pérez and N. Porras Garzón, “Desarrollo De Un Sistema De Comunicación Basado En Radio Definido Por Software Para Un
Robot Modular,” Universidad Distrital Francisco José de Caldas, 2020.
[27] A. J. Ospino Polanco and C. A. Díaz Villadiego, “Implementación de una herramienta de radio definido por software que emule una red de
telefonía celular móvil para ser usada en la enseñanza dentro del programa de ingeniería electrónica,” Universidad de La Costa, 2022.
[28] D. Carralero Alonso, “Radio Definida Por Software En Dispositivos De Bajo Coste,” Universidad de La Laguna, 2016.
[29] D. Ball, N. Naik, and P. Jenkins, “Spectrum Alerting System Based on Software Defined Radio and Raspberry Pi,” 2017 Sens. Signal Process. Def. Conf. SSPD 2017, vol. 2017-Janua, pp. 1–5, 2017.
[30] R. Utrilla, A. Rozas, J. Blesa, and A. Araujo, “A hybrid approach to enhance cognitive wireless sensor networks with energy-efficient software-defined radio capabilities,” in International Conference on Embedded Wireless Systems and Networks, 2017, no. September
2019, pp. 294–299.
[31] G. Piccinni, G. Avitabile, G. Coviello, and C. Talarico, “Modeling of a re-configurable indoor positioning system based on software
defined radio architecture,” in 2018 New Generation of CAS, NGCAS 2018, 2018, pp. 174–177.
[32] Á. Rojo Ortego, “Inhibición de señales GSM en Software Defined Radio,” Universidad Carlos III de Madrid, 2018.
[33] A. Cassagne, “Optimization and parallelization methods for softwaredefined radio,” Univeristé de Bordeaux, 2021.
[34] J. S. Phull, N. S. Grewal, S. P. Singh, and A. Rani, “Implementation and Performance Analysis of Cognitive Radio with Frequency Updating Algorithm on Software-defined Radio Platform,” Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents Electr. Electron. Eng., vol. 14, no. 3, pp. 268–275, Dec. 2020.
[35] Á. Gutiérrez Rivera, “Implementación de Software Defined Radio en sistemas de comunicaciones actuales,” Universidad de Sevilla, 2017.
[36] I. Georgescu, N. Angelescu, D. C. Puchianu, G. Predusca, and L. D. Circiumarescu, “Software defined radio applications - Receiving and
decoding images transmitted by weather satellites,” Proc. 13th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2021, Jul. 2021.
[37] D. J. Deng, S. Y. Lien, C. C. Lin, S. C. Hung, and W. B. Chen, “Latency Control in Software-Defined Mobile-Edge Vehicular
Networking,” IEEE Commun. Mag., vol. 55, no. 8, pp. 87–93, 2017.
[38] Y. Ma, Y. Zeng, and S. Sun, “A software defined radio based multifunction radar for IoT applications,” in 2018 24th Asia-Pacific
Conference on Communications, APCC 2018, 2019, vol. 2, pp. 239–244.
[39] B. Siva Kumar Reddy, Experimental validation of spectrum sensing techniques using software-defined radio, vol. 511. Springer
Singapore, 2019.
[40] I. Martoyo, A. Coandi, D. Pratignyo, H. Y. Kanalebe, H. P. Uranus, and M. Pardede, “Software defined radio applications for mini GSM
BTS and spectrum analyzer with bladeRF,” in Proceedings - 2018
International Conference on Radar, Antenna, Microwave,
Electronics, and Telecommunications, ICRAMET 2018, 2018, pp.
108–111.
[41] S. Xu, X. W. Wang, and M. Huang, “Software-Defined NextGeneration Satellite Networks: Architecture, Challenges, and Solutions,” IEEE Access, vol. 6, no. c, pp. 4027–4041, 2018.
[42] T. Hussain et al., “A high performance software defined radio system architecture and development environment for a wide range of
applications,” 2018 Int. Conf. Comput. Math. Eng. Technol. Inven. Innov. Integr. Socioecon. Dev. iCoMET 2018 - Proc., vol. 2018- Janua, pp. 1–5, 2018.
[43] A. Sulimov, A. Galiev, A. Karpov, and V. Markelov, “Verification of Wireless Key Generation Using Software Defined Radio,” in 2019
International Siberian Conference on Control and Communications, 2019, pp. 1–6.
[44] T. T. T. Quynh, T. V. Khoa, L. Van Nguyen, and N. Linh-Trung,
“Network coding with multimedia transmission: A software-definedradio based implementation,” in Proceedings - 2019 3rd International
Conference on Recent Advances in Signal Processing, Telecommunications and Computing, SigTelCom 2019, 2019, no. ii, pp. 109–113.
[45] S. A. Alawsh, O. O. Al Basheer, A. O. Sirag, and A. H. Muqaibel, “Range and angle measurements based on software defined radio
platform,” in 2019 IEEE 10th GCC Conference and Exhibition, GCC 2019, 2019, pp. 1–5.
[46] [S. Kumar, “Architecture for Simultaneous Multi-Standard Software Defined Radio Receiver,” Sorbonne Universite, 2019.
[47] D. E. Shumakher, G. V. Nikonova, and L. V. Shchapova,
“Radiosignal Identification System for the Software-Defined Radio,” in 2019 International Seminar on Electron Devices Design and Production, SED 2019 - Proceedings, 2019, pp. 1–5.
[48] F. A. M. Bargarai, A. M. Abdulazeez, V. M. Tiryaki, and D. Q. Zeebaree, “Management of wireless communication systems using
artificial intelligence-based software defined radio,” Int. J. Interact. Mob. Technol., vol. 14, no. 13, pp. 107–133, 2020.
[49] D. Bykhovsky, “Teaching wireless channel modeling with softwaredefined radio,” Comput. Appl. Eng. Educ., vol. 28, no. 2, pp. 314–323,
2020.
[50] N. Ayir and T. Riihonen, “Impact of software-defined radio transmitter on the efficiency of RF wireless power transfer,” in 2020
IEEE Wireless Power Transfer Conference, WPTC 2020, 2020, pp. 83–86.
[51] B. S. K. Reddy, K. Mannem, and K. Jamal, “Software Defined Radio Based Non-orthogonal Multiple Access (NOMA) Systems,” Wirel. Pers. Commun., vol. 119, no. 2, pp. 1251–1273, 2021.
[52] J. Liang, H. Chen, and S. C. Liew, “Design and Implementation of Time-Sensitive Wireless IoT Networks on Software-Defined Radio,”
IEEE Internet Things J., vol. 9, no. 3, pp. 2361–2374, 2022.
[53] A. E. Stancombe, K. S. Bialkowski, and A. M. Abbosh, “Portable microwave head imaging system using software-defined radio and switching network,” IEEE J. Electromagn. RF Microwaves Med. Biol., vol. 3, no. 4, pp. 284–291, 2019.
[54] A. E. Stancombe and K. S. Bialkowski, “Portable biomedical microwave imaging using software-defined radio,” in Asia-Pacific
Microwave Conference Proceedings, APMC, 2019, vol. 2018- Novem, pp. 572–574.
[55] J. Marimuthu, K. S. Bialkowski, and A. M. Abbosh, “Softwaredefined radar for medical imaging,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 2, pp. 643–652, 2016.
[56] [R. Y.-M. Huang, V. C. Leung, C.-F. Lai, S. Mukhopadhyay, and R. Lai, “Reconfigurable Software Defined Radio in 5G Mobile
Communication System,” IEEE Wirel. Commun., vol. 25, no. December, pp. 12–14, 2015.
[57] A. Sadek, H. Mostafa, A. Nassar, and Y. Ismail, “Towards the implementation of Multi-band Multi-standard Software-Defined Radio using Dynamic Partial Reconfiguration,” Int. J. Commun. Syst., vol. 30, no. 17, pp. 1–12, 2017.
[58] A. Sadek, H. Mostafa, and A. Nassar, “On the use of dynamic partial reconfiguration for multi-band/multi-standard software defined
radio,” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems, 2016, vol. 2016-March, pp. 498– 499.
[59] D. Rouffet and W. König, “Dynamic channel coding reconfiguration in Software Defined Radio,” in 2015 27th International Conference on Microelectronics (ICM), Casablanca, Morocco, 2015, pp. 13–16.
[60] S. O. Ugwuanyi and M. A. Ahaneku, “Radio frequency and channel investigation using software defined radio in MATLAB And simulink
environment,” Niger. J. Technol., vol. 37, no. 4, p. 1049, 2018.
[61] T. Kokumo Yesufu, “Weak Amplitude Modulated (AM) Signal Detection Algorithm for Software-Defined Radio Receivers,” Int. J.
Intell. Inf. Syst., vol. 4, no. 4, p. 79, 2015.
[62] T. Kokumo, J. Otolorin, and A. Olawole, “An Algorithm for a SubNyquist Rate AM and FM Software-Defined Radio Based on the
Market Paradigm,” Sci. J. Circuits, Syst. Signal Process., vol. 4, no. 3, p. 18, 2015.
[63] S. Ajala, E. Adetiba, M. B. Akanle, O. O. Obiyemi, S. Thakur, and J. Abolarinwa, “Experimentations on the Transmit Power of a Universal Software Radio Peripheral Using GNU Radio Framework and a Handheld RF Explorer,” IOP Conf. Ser. Earth Environ. Sci., vol. 655,
no. 1, pp. 1–7, 2021

Descargas

Los datos de descargas todavía no están disponibles.

Citado por