Ingenierías USBMed
Dimensions

PlumX

How to Cite
Aristizábal, C. E., & Gonzalez Manosalva, J. L. (2022). Edible vegetable oils as complementary agents for the protection and disinfection of 2019-nCOVID . Ingenierías USBmed, 13(1), 30–39. https://doi.org/10.21500/20275846.5370 (Original work published May 19, 2022)
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

Viral respiratory diseases, such as the new coronavirus (2019-nCoV), which has spread to many other countries around the world causing deaths, economic and social problems. This article studies and addresses unconventional compounds that act as effective protection and disinfection agents against 2019-nCoV. The selected compounds are based on the ability to destroy the structural proteins of this virus and inhibit its mechanisms of spreading and invading healthy cells. Therefore, several edible and vegetable oils are proposed according to their ability to dissolve proteins (GP120), their surface tension and their composition of fatty acids.

Keywords:

References

[1] S. Kang et al., “Recent Progress in understanding 2019 Novel Coronavirus associated with Human Respiratory Disease: Detection, Mechanism and Treatment,” Int. J. Antimicrob. Agents, p. 105950, 2020, doi: 10.1016/j.ijantimicag.2020.105950.

[2] S. S. Unhale, Q. B. Ansar, S. Sanap, S. Thakhre, and S. Wadatkar, “A REVIEW ON CORONA VIRUS ( COVID-19 ),” World J. Pharm. Life Sci., vol. 6, no. 4, pp. 109–115, 2020, [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK554776/.

[3] M. Cascella, M. Rajnik, A. Cuomo, S. C. Dulebohn, and R. Di Napoli, “Features, Evaluation and Treatment Coronavirus (COVID-19),” StatPearls, 2020, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/32150360.

[4] G. MCDONNELL and D. Russel, “Antiseptics and Disinfectants: Activity, Action, and Resistance,” Clin. Microbiol. Rev., vol. 12, no. 1, pp. 147–149, 2016, doi: 0893-8512/99/$04.00⫹0.

[5] G. Kampf, “Efficacy of ethanol against viruses in hand disinfection,” J. Hosp. Infect., vol. 98, no. 4, pp. 331–338, 2018, doi: 10.1016/j.jhin.2017.08.025.

[6] HSP and HSPiP, “HSP Examples: DNA | Hansen Solubility Parameters,” Hansen Solubility Parameter, 2021. https://www.hansen-solubility.com/HSP-examples/dna.php (accessed Mar. 22, 2021).

[7] S. Kannan, P. Shaik Syed Ali, A. Sheeza, and K. Hemalatha, “COVID-19 (Novel Coronavirus 2019) - recent trends,” Eur. Rev. Med. Pharmacol. Sci., vol. 24, no. 4, pp. 2006–2011, 2020, doi: 10.26355/eurrev_202002_20378.

[8] P. Pradhan et al., “Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag,” BioRxiv, no. December 2019, 2020, doi: 10.1101/2020.01.30.927871.

[9] A. Rahman, M. G. Rasul, M. M. K. Khan, and S. Sharma, “Recent development on the uses of alternative fuels in cement manufacturing process,” Fuel, vol. 145, pp. 84–99, 2015, doi: 10.1016/j.fuel.2014.12.029.

[10] D. Schoeman and B. C. Fielding, “Coronavirus envelope protein: Current knowledge,” Virol. J., vol. 16, no. 1, pp. 1–22, 2019, doi: 10.1186/s12985-019-1182-0.

[11] J. F. W. Chan, K. K. W. To, H. Tse, D. Y. Jin, and K. Y. Yuen, “Interspecies transmission and emergence of novel viruses: Lessons from bats and birds,” Trends Microbiol., vol. 21, no. 10, pp. 544–555, 2013, doi: 10.1016/j.tim.2013.05.005.

[12] W. Fan, J. Zeng, and Y. Xu, “A theoretical discussion of the possibility and possible mechanisms of using sesame oil for prevention of 2019-nCoV (Wuhan coronavirus) from the perspective …,” Researchgate.Net, no. February, 2020, doi: 10.13140/RG.2.2.31786.98248.

[13] U. N. Das, “Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review,” J. Adv. Res., vol. 11, pp. 57–66, 2018, doi: 10.1016/j.jare.2018.01.001.

[14] H. Thormar, C. E. Isaacs, H. R. Brown, M. R. Barshatzky, and T. Pessolano, “Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides,” Antimicrob. Agents Chemother., vol. 31, no. 1, pp. 27–31, 1987, doi: 10.1128/AAC.31.1.27.

[15] M. Noriega, “Tema 3. Secreción salivar y gástrica. Fisiología Humana,” Opencourseware. Universidad de Cantabria, 2011. https://ocw.unican.es/mod/page/view.php?id=566.

[16] A. S. Hukkerikar, B. Sarup, A. Ten Kate, J. Abildskov, G. Sin, and R. Gani, “Group-contribution + (GC +) based estimation of properties of pure components: Improved property estimation and uncertainty analysis,” Fluid Phase Equilib., vol. 321, pp. 25–43, 2012, doi: 10.1016/j.fluid.2012.02.010.

[17] C. E. Aristizábal-alzate, “Numerical determination of the solubility of vitamin C in various solvents , for selective extraction or for its incorporation in formulations oriented to care , welfare and health of the skin Determinación numérica de la solubilidad de la vitamina C en d,” DYNA, vol. 83, no. 199, pp. 191–197, 2016, doi: http://dx.doi.org/10.15446/dyna.v83n199.54828.

[18] J. Marrero and R. Gani, “Group-contribution based estimation of pure component properties,” Fluid Phase Equilib., vol. 183–184, pp. 183–208, 2001, doi: 10.1016/S0378-3812(01)00431-9.

[19] C. E. Aristizábal, A. F. Vargas, and P. N. Alvarado, “Numerical determination of the correct solvents to extract a phytochemical from coffee pulp using Hansen solubility parameters, risk assessment , sustainability evaluation , and economic analysis,” DYNA, vol. 86, no. 211, pp. 138–147, 2019, doi: http://doi.org/10.15446/dyna.v86n211.78530.

[20] J. B. Durkee, “Chapter 2 - Solubility Scales (Parameters),” in Cleaning with Solvents, 2014, pp. 29–55.

[21] C. E. Aristizábal-Alzate, “Numerical determination of the solubility of vitamin C in various solvents, for selective extraction or for its incorporation in formulations oriented to care, welfare and health of the skin,” DYNA, vol. 83, pp. 191–197, 2016, doi: 10.15446/dyna.v83n199.54828.

[22] J. B. Durkee, “Chapter 3 - Solvent Selection for Specific Tasks,” in Cleaning with Solvents, Elsevier Inc., 2014, pp. 57–123.

[23] C. M. Hansen, Hansen Solubility Parameters: A User’s Handbook, Second Edi. Taylor & Francis Group, 2007.

[24] C. M. Ramírez Botero, B. D. Gómez Ramírez, J. P. Martínez Galán, J. P. Martínez Galán, and L. M. Cardona Zuleta, “Perfil de ácidos grasos en aceites de cocina de mayor venta en Medellín-Colombia,” Perspect. en Nutr. Humana, vol. 16, no. 2, pp. 175–185, 2014, doi: 10.17533/udea.penh.v16n2a05.

[25] S. N. Sahasrabudhe, V. Rodriguez-Martinez, M. O’Meara, and B. E. Farkas, “Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: Measurement and modeling,” Int. J. Food Prop., vol. 20, no. 00, pp. 1965–1981, 2017, doi: 10.1080/10942912.2017.1360905.

[26] E. A. Melo-Espinosa et al., “Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression,” Energy Procedia, vol. 57, pp. 886–895, 2014, doi: 10.1016/j.egypro.2014.10.298.

[27] N. Siddiqui and A. Ahmad, “A study on viscosity, surface tension and volume flow rate of some edible and medicinal oils,” Int. J. Sci. Environ. Technol., vol. 2, no. 6, pp. 1318–1326, 2013.

[28] W. S. Singleton and R. R. Benerito, “Surface phenomena of fats for parenteral nutrition,” J. Am. Oil Chem. Soc., vol. 32, no. 1, pp. 23–25, 1955, doi: 10.1007/BF02636473.

[29] M. Flores, C. Saravia, C. E. Vergara, F. Avila, H. Valdés, and J. Ortiz-Viedma, “Avocado oil: Characteristics, properties, and applications,” Molecules, vol. 24, no. 11, pp. 1–21, 2019, doi: 10.3390/molecules24112172.

Downloads

Download data is not yet available.

Cited by