Ingenierías USBMed
Dimensions

PlumX

How to Cite
Moreno Cortes, D. S., Solaque Guzmán, L. E., & Velasco Vivas, A. (2024). Supervision system applied to the precision agriculture robot CERES for agricultural crops care. Ingenierías USBmed, 15(2). https://doi.org/10.21500/20275846.6216
License terms

This journal provides immediately free access to its contents under the principle that make available the research results for free to the public, helps for a greater global exchange of knowledge.

Therefore, the journal invokes the Creative Commons 4.0

License attributions: Recognition – Non-commertial - Share equal. Commercial use and distribution of original or derivative works are not permitted and must be done with a equal license as the one that regulate the original work.

Abstract

The significant reform in the production processes used by farmers to guarantee the food chain in Colombia requires developments that contribute to the optimization of resources, adequate use of supplies and less use of labor. For this, robotics plays a fundamental role that can help to face these challenges through supervisory systems capable of managing coordinated tasks for the benefit of agriculture. This article presents the development of a supervision system for a robot that provides care and protection to the health of potato crops, aimed at preventing phytosanitary problems, and guaranteeing plant health through the necessary nutrition. The structure of the supervisory system implemented in the CERES agricultural robot is based on the theory of adaptive decision making that works in real time. The supervision algorithm was integrated into the general programming architecture of the CERES agricultural robot through the Python language, coding the supervision algorithm and integrating it into the general programming architecture of the agricultural robot, which in this case is based on ROS. Obtaining a hierarchy of tasks for the care of potato crops.

Keywords:

References

[1] DVA, «Importancia de la agricultura colombiana», 16 de marzo
de 2021. https://dva.com.co/importancia-de-la-agriculturacolombiana/ (accedido 28 de septiembre de 2022).

[2] E. Press, «Colombia, la despensa de alimentos del mundo para 2030»,
19 de octubre de 2018.
https://www.europapress.es/comunicados/internacional00907/noticia-comunicado-colombia-despensa-alimentos-mundo2030-20181019080139.html (accedido 28 de septiembre de 2022).

[3] D. J. Pérez-Ortega, F. A. Bolaños-Alomia, y A. M. da Silva,
«Variables que influyen en la aplicación de la agricultura de precisión
en Colombia: revisión de estudios», Ciencia y Tecnología
Agropecuaria, vol. 23, n.o 1, 2022, doi:
10.21930/rcta.vol23_num1_art:2298.

[4] M. V. Uribe et al., «Impacto en la salud y el medio ambiente por
exposición a plaguicidas e implementación de buenas prácticas
agrícolas en el cultivo de tomate, Colombia, 2011.», Revista Chilena
de Salud Pública, vol. 16, n.o
2, pp. 96-106, jun. 2012.

[5] T. W. Griffin y J. Lowenberg-DeBoer, «Worldwide adoption and
profitability of precision agriculture Implications for Brazil», Revista
de Política Agrícola, vol. 14, n.o 4, pp. 20-37, 2005.

[6] B. (Colombia) Instituto Colombiano Agropecuario, Manejo
fitosanitario del cultivo de la papa (Solanum tuberosum subsp.
andigena y S. phureja) :medidas para la temporada invernal. ICA,
2011. Accedido: 7 de octubre de 2022. [En línea]. Disponible en:
https://repository.agrosavia.co/handle/20.500.12324/2281

[7] L. Solaque, G. Sánchez, y A. Riveros, «Controlador PI2 para las
velocidades de un robot agrícola evaluado usando Hardware en el
lazo (HIL) \textbar Ingenierías USBMed», sep. 2022, Accedido: 1 de
octubre de 2022. [En línea]. Disponible en:
https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/4662

[8] M. Hussain, S. H. A. Naqvi, S. H. Khan, y M. Farhan, «An Intelligent
Autonomous Robotic System for Precision Farming», en 2020 3rd
International Conference on Intelligent Autonomous Systems
(ICoIAS), feb. 2020, pp. 133-139. doi:
10.1109/ICoIAS49312.2020.9081844.

[9] S. Sharma y R. Borse, «Automatic Agriculture Spraying Robot with
Smart Decision Making», en Intelligent Systems Technologies and
Applications 2016, Cham, 2016, pp. 743-758. doi: 10.1007/978-3-
319-47952-1_60.

[10] I. Beloev, D. Kinaneva, G. Georgiev, G. Hristov, y P. Zahariev,
«Artificial Intelligence-Driven Autonomous Robot for Precision
Agriculture», Acta Technologica Agriculturae, vol. 24, n.o 1, pp. 48-
54, feb. 2021, doi: 10.2478/ata-2021-0008.

[11] «Robot-generated Crop Maps for Decision-making in Vineyards».
https://doi.org/10.13031/aim.20152189909 (accedido 21 de octubre
de 2022).

[12] G. B. P. Barbosa, E. C. Da Silva, y A. C. Leite, «Robust Image-based
Visual Servoing for Autonomous Row Crop Following with Wheeled
Mobile Robots», en 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE), ago. 2021, pp. 1047-
1053. doi: 10.1109/CASE49439.2021.9551667.

[13] A. Durand-Petiteville, E. Le Flecher, V. Cadenat, T. Sentenac, y S.
Vougioukas, «Tree Detection With Low-Cost Three-Dimensional
Sensors for Autonomous Navigation in Orchards», IEEE Robotics
and Automation Letters, vol. 3, n.o 4, pp. 3876-3883, oct. 2018, doi:
10.1109/LRA.2018.2857005.

[14] Z. Liu, J. Chen, Z. Mei, y C. Li, «ROS-based robot offline planning
simulation system», IOP Conf. Ser.: Mater. Sci. Eng., vol. 711, n.o
1,
p. 012002, ene. 2020, doi: 10.1088/1757-899X/711/1/012002.

[15] Z. Kapić, A. Crnkić, E. Mujčić, y J. Hamzabegović, «A web
application for remote control of ROS robot based on WebSocket
protocol and Django development environment», IOP Conf. Ser.:
Mater. Sci. Eng., vol. 1208, n.o 1, p. 012035, nov. 2021, doi:
10.1088/1757-899X/1208/1/012035.

[16] A. Smirnov y N. Teslya, «Robot Coalition Coordination in Precision
Agriculture by Smart Contracts in Blockchain», en Agriculture
Digitalization and Organic Production, Singapore, 2022, pp. 271-
283. doi: 10.1007/978-981-16-3349-2_23.

[17] L. Solaque, A. Velasco, y A. Riveros, «Planificación de trayectorias
por técnica de A* y suavizado por curvas de Bezier para la
herramienta del sistema de remoción de maleza de un robot dedicado
a labores de agricultura de precisión», Entre Ciencia e Ingeniería,
vol. 12, n.o 24, pp. 43-51, 2018, doi: 10.31908/19098367.3814.

[18] O. Tsymbal, A. Bronnikov, y A. Yerokhin, «Adaptive Decisionmaking for Robotic tasks», en 2019 IEEE 8th International
Conference on Advanced Optoelectronics and Lasers (CAOL), sep.
2019, pp. 594-597. doi: 10.1109/CAOL46282.2019.9019488.

[19] M. A. Salichs, M. Malfaz, y J. F. Gorostiza, «Toma de Decisiones en
Robótica», Revista Iberoamericana de Automática e Informática
Industrial RIAI, vol. 7, n.o
4, pp. 5-16, oct. 2010, doi: 10.1016/S1697-
7912(10)70055-8.

[20] NVIDIA «Jetson TX1 Module», NVIDIA Developer, 1 de agosto de
2016. https://developer.nvidia.com/embedded/jetson-tx1.

Downloads

Download data is not yet available.

Cited by