Ingenierías USBMed
Aceites vegetales comestibles como agentes complementarios para la protección y desinfección del 2019-nCOVID)
pdf

Palabras clave

2019-nCoV, aceite comestible, tensión superficial, actividad antiviral, solubilidad

Cómo citar

Aristizábal, C. E., & Gonzalez Manosalva, J. L. (2022). Aceites vegetales comestibles como agentes complementarios para la protección y desinfección del 2019-nCOVID). Ingenierías USBMed, 13(1), 30–39. https://doi.org/10.21500/20275846.5370

Resumen

Las enfermedades respiratorias virales, como el nuevo coronavirus (2019-nCoV), el cual se ha extendido a muchos otros países alrededor del mundo, causan muertes, problemas económicos y sociales. En el presente artículo se estudian y abordan compuestos no convencionales que actúan como agentes de protección y desinfección eficaces en contra del 2019-nCoV. Los compuestos seleccionados se basan en la capacidad de destruir las proteínas estructurales de este virus e inhibir sus mecanismos de propagación e invasión de las células sanas. Por lo tanto, varios aceites vegetales y comestibles fueron propuestos, de acuerdo con su capacidad de disolución de las proteínas (GP120), su tensión superficial y su composición de ácidos grasos.

https://doi.org/10.21500/20275846.5370
pdf

Citas

S. Kang et al., “Recent Progress in understanding 2019 Novel Coronavirus associated with Human Respiratory Disease: Detection, Mechanism and Treatment,” Int. J. Antimicrob. Agents, p. 105950, 2020, doi: 10.1016/j.ijantimicag.2020.105950.

S. S. Unhale, Q. B. Ansar, S. Sanap, S. Thakhre, and S. Wadatkar, “A REVIEW ON CORONA VIRUS ( COVID-19 ),” World J. Pharm. Life Sci., vol. 6, no. 4, pp. 109–115, 2020, [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK554776/.

M. Cascella, M. Rajnik, A. Cuomo, S. C. Dulebohn, and R. Di Napoli, “Features, Evaluation and Treatment Coronavirus (COVID-19),” StatPearls, 2020, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/32150360.

G. MCDONNELL and D. Russel, “Antiseptics and Disinfectants: Activity, Action, and Resistance,” Clin. Microbiol. Rev., vol. 12, no. 1, pp. 147–149, 2016, doi: 0893-8512/99/$04.00⫹0.

G. Kampf, “Efficacy of ethanol against viruses in hand disinfection,” J. Hosp. Infect., vol. 98, no. 4, pp. 331–338, 2018, doi: 10.1016/j.jhin.2017.08.025.

HSP and HSPiP, “HSP Examples: DNA | Hansen Solubility Parameters,” Hansen Solubility Parameter, 2021. https://www.hansen-solubility.com/HSP-examples/dna.php (accessed Mar. 22, 2021).

S. Kannan, P. Shaik Syed Ali, A. Sheeza, and K. Hemalatha, “COVID-19 (Novel Coronavirus 2019) - recent trends,” Eur. Rev. Med. Pharmacol. Sci., vol. 24, no. 4, pp. 2006–2011, 2020, doi: 10.26355/eurrev_202002_20378.

P. Pradhan et al., “Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag,” BioRxiv, no. December 2019, 2020, doi: 10.1101/2020.01.30.927871.

A. Rahman, M. G. Rasul, M. M. K. Khan, and S. Sharma, “Recent development on the uses of alternative fuels in cement manufacturing process,” Fuel, vol. 145, pp. 84–99, 2015, doi: 10.1016/j.fuel.2014.12.029.

D. Schoeman and B. C. Fielding, “Coronavirus envelope protein: Current knowledge,” Virol. J., vol. 16, no. 1, pp. 1–22, 2019, doi: 10.1186/s12985-019-1182-0.

J. F. W. Chan, K. K. W. To, H. Tse, D. Y. Jin, and K. Y. Yuen, “Interspecies transmission and emergence of novel viruses: Lessons from bats and birds,” Trends Microbiol., vol. 21, no. 10, pp. 544–555, 2013, doi: 10.1016/j.tim.2013.05.005.

W. Fan, J. Zeng, and Y. Xu, “A theoretical discussion of the possibility and possible mechanisms of using sesame oil for prevention of 2019-nCoV (Wuhan coronavirus) from the perspective …,” Researchgate.Net, no. February, 2020, doi: 10.13140/RG.2.2.31786.98248.

U. N. Das, “Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review,” J. Adv. Res., vol. 11, pp. 57–66, 2018, doi: 10.1016/j.jare.2018.01.001.

H. Thormar, C. E. Isaacs, H. R. Brown, M. R. Barshatzky, and T. Pessolano, “Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides,” Antimicrob. Agents Chemother., vol. 31, no. 1, pp. 27–31, 1987, doi: 10.1128/AAC.31.1.27.

M. Noriega, “Tema 3. Secreción salivar y gástrica. Fisiología Humana,” Opencourseware. Universidad de Cantabria, 2011. https://ocw.unican.es/mod/page/view.php?id=566.

A. S. Hukkerikar, B. Sarup, A. Ten Kate, J. Abildskov, G. Sin, and R. Gani, “Group-contribution + (GC +) based estimation of properties of pure components: Improved property estimation and uncertainty analysis,” Fluid Phase Equilib., vol. 321, pp. 25–43, 2012, doi: 10.1016/j.fluid.2012.02.010.

C. E. Aristizábal-alzate, “Numerical determination of the solubility of vitamin C in various solvents , for selective extraction or for its incorporation in formulations oriented to care , welfare and health of the skin Determinación numérica de la solubilidad de la vitamina C en d,” DYNA, vol. 83, no. 199, pp. 191–197, 2016, doi: http://dx.doi.org/10.15446/dyna.v83n199.54828.

J. Marrero and R. Gani, “Group-contribution based estimation of pure component properties,” Fluid Phase Equilib., vol. 183–184, pp. 183–208, 2001, doi: 10.1016/S0378-3812(01)00431-9.

C. E. Aristizábal, A. F. Vargas, and P. N. Alvarado, “Numerical determination of the correct solvents to extract a phytochemical from coffee pulp using Hansen solubility parameters, risk assessment , sustainability evaluation , and economic analysis,” DYNA, vol. 86, no. 211, pp. 138–147, 2019, doi: http://doi.org/10.15446/dyna.v86n211.78530.

J. B. Durkee, “Chapter 2 - Solubility Scales (Parameters),” in Cleaning with Solvents, 2014, pp. 29–55.

C. E. Aristizábal-Alzate, “Numerical determination of the solubility of vitamin C in various solvents, for selective extraction or for its incorporation in formulations oriented to care, welfare and health of the skin,” DYNA, vol. 83, pp. 191–197, 2016, doi: 10.15446/dyna.v83n199.54828.

J. B. Durkee, “Chapter 3 - Solvent Selection for Specific Tasks,” in Cleaning with Solvents, Elsevier Inc., 2014, pp. 57–123.

C. M. Hansen, Hansen Solubility Parameters: A User’s Handbook, Second Edi. Taylor & Francis Group, 2007.

C. M. Ramírez Botero, B. D. Gómez Ramírez, J. P. Martínez Galán, J. P. Martínez Galán, and L. M. Cardona Zuleta, “Perfil de ácidos grasos en aceites de cocina de mayor venta en Medellín-Colombia,” Perspect. en Nutr. Humana, vol. 16, no. 2, pp. 175–185, 2014, doi: 10.17533/udea.penh.v16n2a05.

S. N. Sahasrabudhe, V. Rodriguez-Martinez, M. O’Meara, and B. E. Farkas, “Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: Measurement and modeling,” Int. J. Food Prop., vol. 20, no. 00, pp. 1965–1981, 2017, doi: 10.1080/10942912.2017.1360905.

E. A. Melo-Espinosa et al., “Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression,” Energy Procedia, vol. 57, pp. 886–895, 2014, doi: 10.1016/j.egypro.2014.10.298.

N. Siddiqui and A. Ahmad, “A study on viscosity, surface tension and volume flow rate of some edible and medicinal oils,” Int. J. Sci. Environ. Technol., vol. 2, no. 6, pp. 1318–1326, 2013.

W. S. Singleton and R. R. Benerito, “Surface phenomena of fats for parenteral nutrition,” J. Am. Oil Chem. Soc., vol. 32, no. 1, pp. 23–25, 1955, doi: 10.1007/BF02636473.

M. Flores, C. Saravia, C. E. Vergara, F. Avila, H. Valdés, and J. Ortiz-Viedma, “Avocado oil: Characteristics, properties, and applications,” Molecules, vol. 24, no. 11, pp. 1–21, 2019, doi: 10.3390/molecules24112172.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2022 Ingenierías USBMed

Descargas

Los datos de descargas todavía no están disponibles.